Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle

Ioan A. Rus

Abstract

Keywords: Space of continuous function, operator with Volterra property, max-norm, Bielecki norm, contraction, G-contraction, fiber contraction, progressive contraction, step by step contraction, fixed point, Picard operator, weakly Picard operator, differential equation, integral equation, conjecture. 2010 MSC: 47H10, 47H09, 34K05, 34K12, 45D05, 45G10, 54H25.

1. Introduction

Following an idea of T.A. Burton ([7], [8], [9], ...) of progressive contractions, and the forward step method ([21]), in this paper we give some variants of contraction principle in the case of operators with...
Volterra property. The basic ingredient in our variant, step by step contraction principle, is \(G\)-contraction \([20]\). Some applications to differential and integral equations are also given. In connection with our abstract results, a conjecture is formulated.

2. Preliminaries

2.1. \(G\)-contractions

Let \((X,d)\) be a metric space and \(G \subset X \times X\) be a nonempty subset. An operator \(f : X \to X\) is a \(G\)-contraction if there exists \(l \in]0,1[\) such that,

\[
d(f(x), f(y)) \leq ld(x,y), \forall (x,y) \in G.
\]

Here are some examples of subsets \(G \subset X \times X\):

1. \(G := G(f)\), the graphic of the operator \(f\). In this case, a \(G\)-contraction is a graphic contraction \([17, 24, \ldots]\).

2. Let \(A_i \subset X\), \(i = 1, p\), be nonempty closed subsets such that:

 (i) \(X = \bigcup_{i=1}^{p} A_i\);

 (ii) \(f(A_i) \subset A_{i+1}\), \(i = 1, p\), \((A_{p+1} = A_1)\).

For, \(G := \bigcup_{i=1}^{p} (A_i \times A_{i+1})\), a \(G\)-contraction is a cyclic contraction of Kirk-Srinivasan-Veeramani (see the references in \([20]\)).

3. Let \(a, b, c \in \mathbb{R}\), \(a < c < b\) and \(X := C[a,b]\) with \(d(x,y) := \max_{t \in [a,b]} |x(t) - y(t)|\). For \(K, H \in C([a,b] \times [a,b] \times \mathbb{R}, \mathbb{R})\), we consider the operator, \(f : C[a,b] \to C[a,b]\), defined by,

\[
f(x)(t) := \int_{a}^{c} K(t,s,x(s))ds + \int_{a}^{t} H(t,s,x(s))ds, \ t \in [a,b].
\]

We suppose that there exists \(L_H > 0\) such that

\[
|H(t,s,u) - H(t,s,v)| \leq L_H |u - v|, \ \forall \ t, s \in [a,b], \ \forall \ u, v \in \mathbb{R}.
\]

If, \(L_H (b - c) < 1\) and if we take

\[
G := \{(x,y) \in C[a,b] \times C[a,b] \ | \ x|_{[a,c]} = y|_{[a,c]}\},
\]

then \(f\) is a \(G\)-contraction.

For other examples of \(G\)-contractions see \([20]\) and \([24]\), pp. 282-284.

2.2. Weakly Picard operators

Let \((X,\to)\) be an \(L\)-space \(((X,d), \to; (X,\tau), \to; (X,\|\cdot\|), \to; \ldots)\). An operator \(f : X \to X\) is weakly Picard operator \((WPO)\) if the sequence, \((f^n(x))_{n \in \mathbb{N}}\), converges for all \(x \in X\) and the limit (which generally depend on \(x\)) is a fixed point of \(f\).

If an operator \(f\) is \(WPO\) and the fixed point set of \(f\), \(F_f = \{x^*\}\), then by definition \(f\) is Picard operator \((PO)\).

For a \(WPO\), \(f : X \to X\), we define the operator \(f^\infty : X \to X\), by \(f^\infty(x) := \lim_{n \to \infty} f^n(x)\).

We remark that, \(f^\infty(X) = F_f\), i.e., \(f^\infty\) is a set retraction of \(X\) on \(F_f\).

For the case of ordered \(L\)-spaces, we have some properties of \(WPO\) and \(PO\).

Abstract Gronwall Lemma. Let \((X,\to, \leq)\) be an ordered \(L\)-space and \(f : X \to X\) be an operator. We suppose that:
\(f \) is increasing;

(2) \(f \) is WPO.

Then:

(i) \(x \leq f(x) \Rightarrow x \leq f^\infty(x) \);

(ii) \(x \geq f(x) \Rightarrow x \geq f^\infty(x) \).

Abstract Comparison Lemma. Let \((X, \rightarrow, \leq)\) be an ordered \(L\)-space and \(f, g, h : X \rightarrow X\) be such that:

(1) \(f \leq g \leq h \);

(2) the operators \(f, g, h\) are WPO;

(3) the operator \(g\) is increasing.

Then:

\[
x \leq y \leq z \Rightarrow f^\infty(x) \leq g^\infty(y) \leq h^\infty(z).
\]

Regarding the theory of WPO and PO see [18], [19], [22], [23], [24], [17], [21], [2], ...

2.3. Fiber Contraction Principle

In order to present our results, we need the following theorems (see [22], [25], [26], [27], ...).

Fiber Contraction Theorem. Let \((X, \rightarrow)\) be an \(L\)-space, \((Y, \rho)\) be a metric space, \(g : X \rightarrow X\), \(h : X \times Y \rightarrow Y\) and \(f : X \times Y \rightarrow X \times Y\), \(f(x, y) := (g(x), h(x, y))\). We suppose that:

(1) \((Y, \rho)\) is a complete metric space;

(2) \(g\) is WPO;

(3) \(h(x, \cdot) : Y \rightarrow Y\) is \(l\)-contraction, \(\forall x \in X\);

(4) \(h : X \times Y \rightarrow Y\) is continuous.

Then, \(f\) is WPO. Moreover, if \(g\) is a PO, then \(f\) is a PO.

Generalized Fiber Contraction Theorem. Let \((X, \rightarrow)\) be an \(L\)-space, \((X_i, d_i), i = \overline{1, m}, m \geq 1\) be metric spaces. Let, \(f_i : X_0 \times \ldots \times X_i \rightarrow X_i, i = \overline{0, m}\), be some operators. We suppose that:

(1) \((X_i, d_i), i = \overline{1, m}\), are complete metric spaces;

(2) \(f_0\) is a WPO;

(3) \(f_i(x_0, \ldots, x_{i-1}, \cdot) : X_i \rightarrow X_i, i = \overline{1, m}\), are \(l_i\)-contractions;

(4) \(f_i, i = \overline{1, m}\), are continuous.

Then, the operator \(f : X_0 \times \ldots \times X_m \rightarrow X_0 \times \ldots \times X_m\), defined by,

\[
f(x_0, \ldots, x_m) := (f_0(x_0), f_1(x_0, x_1), \ldots, f_m(x_0, \ldots, x_m))
\]

is a WPO.

If \(f_0\) is a PO, then \(f\) is a PO.
3. Operators with Volterra property with respect to a subinterval

Let \((\mathbb{B}, +, \mathbb{R}, |.|)\) be a Banach space, \(a, b, c \in \mathbb{R}, a < c < b\). In what follows, we consider on \(C([a, b], \mathbb{B})\), \(C([a, c], \mathbb{B})\) norms of uniform convergence (max-norm, \(\|\|\), Bielecki norm, \(\|\|_\tau\)). In, \(C([a, b], \mathbb{B}) \times C([a, b], \mathbb{B})\), we consider a subset defined by,

\[
G := \{(x, y) \mid x, y \in C([a, b], \mathbb{B}), x\big|_{[a,c]} = y\big|_{[a,c]}\},
\]

and in, \(C([a, b], \mathbb{B})\), for each \(x \in C([a, c], \mathbb{B})\) we consider the subset,

\[
X_x := \{y \in C([a, b], \mathbb{B}) \mid y\big|_{[a,c]} = x\}.
\]

Definition 3.1. An operator, \(V : C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})\), has the Volterra property with respect to the subinterval, \([a, c]\), if the following implication holds,

\[
x, y \in C([a, b], \mathbb{B}), \ x\big|_{[a,c]} = y\big|_{[a,c]} \Rightarrow V(x)\big|_{[a,c]} = V(y)\big|_{[a,c]}.
\]

Definition 3.2. An operator, \(V : C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})\), has the Volterra property if it has the Volterra property with respect to each subinterval, \([a, t]\), for \(a < t < b\).

For example, let \(K, H \in C([a, b] \times [a, b] \times \mathbb{B}, \mathbb{B})\) and \(V : C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})\) be defined by,

\[
V(x)(t) := \int_a^c K(t, s, x(s))ds + \int_a^t H(t, s, x(s))ds, \ t \in [a, b].
\]

This operator has the Volterra property with respect to the subinterval \([a, c]\), but \(V\) has not the Volterra property.

If, \(V : C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})\), is an operator with Volterra property with respect to \([a, c]\), then the operator \(V\) induces an operator, \(V_1\), on \(C([a, c], \mathbb{B})\), defined by

\[
V_1(x) := \tilde{V}(\tilde{x})\big|_{[a,c]}, \text{ where } \tilde{x} \in C([a, b], \mathbb{B}) \text{ with, } \tilde{x}\big|_{[a,c]} = x.
\]

Remark 3.3. If \(V\) has the Volterra property with respect to \([a, c]\) and \(V\) is a \(G\)-contraction (see section 2.1.), then the operator

\[
V\big|_{X_x} : X_x \rightarrow X_{V_1(x)},
\]

is a contraction for all \(x \in C([a, c], \mathbb{B})\). If \(x^* \in FV_1\), then, \(V(X_{x^*}) \subset X_{x^*}\).

The first abstract result of our paper is the following.

Theorem 3.4. In terms of the above notations, we suppose that:

1. \(V\) has the Volterra property with respect to \([a, c]\);
2. \(V_1\) is a contraction;
3. \(V\) is a \(G\)-contraction.

Then:

(i) \(F_V = \{x^*\}\);
(ii) \(x^*\big|_{[a,c]} = V_1^\infty(x), \ \forall \ x \in C([a, c], \mathbb{B})\);
(iii) \(x^* = V^\infty(x), \ \forall \ x \in X_{x^*}\big|_{[a,c]}\).
Proof. From (1) we have that, $F_{V_1} = \{ x^*_1 \}$, $x^*_1 \in C([a, c], \mathbb{B})$. From (3) and Remark 3.3, $V|_{X_{x^*_1}} : X_{x^*_1} \to X_{x^*_1}$, is a contraction, i.e., it has a unique fixed point, x^*, and $x^*|_{[a, c]} = x^*_1$. From these we have (i), (ii) and (iii).

Conjecture 3.5. In the conditions of Theorem 3.4, the operator V is PO, i.e., $x^* = V^\infty(x)$, $\forall x \in C([a, b], \mathbb{B})$.

For a better understanding of Theorem 3.4 and Conjecture 3.5 in what follows, we present some examples.

Example 3.6. Let a, b, c be as above and $\mathbb{B} := \mathbb{R}$. For $K, H \in C([a, b] \times [a, b] \times \mathbb{R})$ we consider the following functional integral equation,

$$x(t) = \int_a^c K(t, s, x(s))ds + \int_a^t H(t, s, \max_{\theta \in [a, s]} x(\theta))ds, \quad t \in [a, b]. \quad (3.1)$$

We are looking for the solution of this equation in $C[a, b]$. In addition, we suppose that:

(2') there exists $L_K > 0$ such that:

$$|K(t, s, u) - K(t, s, v)| \leq L_K|u - v|, \quad \forall t \in [a, b], \ \forall s \in [a, c], \ \forall u, v \in \mathbb{R};$$

(3') there exists $L_H > 0$ such that,

$$|H(t, s, u) - H(t, s, v)| \leq L_H|u - v|, \quad \forall t, s \in [a, b], \ \forall u, v \in \mathbb{R}.$$

In this case:

$$V(x)(t) = \text{the second part of (3.1)}; \quad V_1(x)(t) = \text{the second part of (3.1)}, \quad \forall t \in [a, c].$$

It is clear that V has the Volterra property with respect to the subinterval $[a, c]$. We consider on $C[a, c]$ and $C[a, b]$ max-norms and if, $(L_K + L_H)(c - a) < 1$, the operator V_1 is a contraction and if, $L_H(b - c) < 1$, the operator V is a G-contraction.

So, by Theorem 3.4, in the above conditions, equation (3.1) has in $C[a, b]$ a unique solution, x^*. Moreover, for $t \in [a, c]$, $x^*(t) = \lim_{n \to \infty} x_n(t)$, for each $x_0 \in C[a, c]$, where $\{x_n\}_{n \in \mathbb{N}}$ is defined by,

$$x_{n+1}(t) = \int_a^c K(t, s, x_n(s))ds + \int_a^t H(t, s, \max_{\theta \in [a, s]} x_n(\theta))ds,$$

and for $t \in [a, b]$, $x^*(t) = \lim_{n \to \infty} y_n(t)$, where $\{y_n\}_{n \in \mathbb{N}}$, is defined by

$y_0 \in C[a, b]$, with $y_0|_{[a, c]} = x^*|_{[a, c]}$, and

$$y_{n+1}(t) = \int_a^c K(t, s, x^*(s))ds + \int_a^t H(t, s, \max_{\theta \in [a, s]} y_n(\theta))ds.$$

Remark 3.7. In the case of operator V, in this example, Conjecture 3.5 is a theorem. Indeed, let $X_0 := C[a, c]$, $X_1 := C[c, b]$ and $C[a, b]$ be endowed with max-norms. We take, $f_0 := V_1$ and $f_1(x, y) : C[a, c] \times C[c, b] \to C[c, b]$ be defined by

$$f_1(x, y)(t) := \int_a^c K(t, s, x(s))ds + \int_a^c H(t, s, \max_{\theta \in [a, s]} x(\theta))ds + \int_a^c H(t, s, \max_{\theta \in [c, s]} y(\theta))ds.$$
We remark that, \(f_0 \) is a PO, and \(f_1(x, \cdot) : C[c, b] \to C[c, b] \) is \(L_H(b - c) \)-contraction. By Fiber Contraction Theorem, in the conditions, \((L_K + L_H)(c - a) < 1 \) and \(L_H(b - c) < 1 \), the operator \(f \) is a Picard operator. Let,

\[
x_0 \in C[a, c], \quad x_{n+1} = f_0(x_n), \quad n \in \mathbb{N},
\]
and

\[
y_0 \in C[c, b], \quad y_{n+1} = f_1(x_n, y_n), \quad n \in \mathbb{N}.
\]

Then, \(x_n \to x^*|_{[a, c]} \) as \(n \to \infty \), \(y_n \to x^*|_{[c, b]} \) as \(n \to \infty \).

We denote,

\[
u_n(t) = \begin{cases} x_n(t), & t \in [a, c], \\ y_n(t), & t \in [c, b]. \end{cases}
\]

Then, \(u_n \in C[a, b] \), for \(n \in \mathbb{N} \), and, \(u_{n+1} = V(u_n) \) with \(u_n \to x^* \) as \(n \to \infty \), i.e., \(V \) is a PO.

This result is very important because we can apply for \(V \), the Abstract Gronwall Lemma. So we have:

Theorem 3.8. Let us consider the equation (3.1) in the following conditions: \((L_K + L_H)(c - a) < 1 \), \(L_H(b - c) < 1 \) and \(K(t, s, \cdot) \), \(H(t, s, \cdot) : \mathbb{R} \to \mathbb{R} \) are increasing functions, for all \(t, s \in [a, b] \). Let us denote by \(x^* \) the unique solution of (3.1). Then the following implications hold:

(i) \(x \in C[a, b] \), \(x(t) \leq \int_a^c K(t, s, x(s))ds + \int_a^t H(t, s, \max \theta \in [a, s] x(\theta))ds \), \(t \in [a, b] \), \(\Rightarrow \) \(x \leq x^* \);

(ii) \(x \in C[a, b] \), \(x(t) \geq \int_a^c K(t, s, x(s))ds + \int_a^t H(t, s, \max \theta \in [a, s] x(\theta))ds \), \(t \in [a, b] \), \(\Rightarrow \) \(x \geq x^* \).

Also, from the Abstract Comparison Lemma we have a comparison result for equation (3.1).

Remark 3.9. For the functional integral equations with maxima, see [7], [17], [26], [22], [13], ...
3.4 In these conditions, equation (3.2) has in $C([a,b], \mathbb{B})$ a unique solution, x^*. Moreover, for $t \in [a,c]$, $x^*(t) = \lim_{n \to \infty} x_n(t)$, where $x_0 \in C[a,c]$, $x_{n+1}(t) = \int_a^c K(t,s,x_n(s))ds + \int_a^t H(t,s,x_n(s))ds$, $n \in \mathbb{N}$ and for $t \in [a,b]$, $x^*(t) = \lim_{n \to \infty} y_n(t)$, where $y_0 \in C([a,b], \mathbb{B})$, with $y_0|_{[a,c]} = x^*$, and $y_{n+1}(t) = \int_a^c K(t,s,x^*(s))ds + \int_a^t H(t,s,y_n(s))ds$, $n \in \mathbb{N}$.

Remark 3.11. In a similar way, as in the case of Example 3.6, the Conjecture 3.5 is a theorem for the operator V in Example 3.10.

Remark 3.12. We can work, in the case of Example 3.10 with max-norm on $C([a,c], \mathbb{B})$ and with a Bielecki norm on $C[c,b]$, i.e., on $C([a,b], \mathbb{B})$ with the norm, $\|x\| = \max_{t \in [a,c]} \max_{s \in [a,b]} e^{-r(t-c)}|x(t)|$.

If $\mathbb{B} := \mathbb{R}^m$, then we can work with vectorial max-norms and with vectorial Bielecki norms.

Remark 3.13. For example of integral operator like V in Example 3.10, which appear in differential equations, see: [3], [17], [4], [3] and the references in [3].

4. Operators with Volterra property

Let, $V : C([a,b], \mathbb{B}) \to C([a,b], \mathbb{B})$, be an operator with Volterra property. Let $m \in \mathbb{N}$, $m \geq 2$, $t_0 := a$, $t_1 := t_0 + \frac{b-a}{m}$, \ldots, $t_k := t_0 + \frac{k(b-a)}{m}$, \ldots, $t_m := b$. We denote by $V_k : C([t_0,t_k], \mathbb{B}) \to C([t_0,t_k], \mathbb{B})$, $k = 1, m-1$, the operators induced by V on $[t_0, t_k]$ (see the definition of V_1 in section 3). We also consider the following sets, $G_k := \{(x,y) \mid x, y \in C([t_0, t_{k+1}], \mathbb{B}), x|_{[t_0,t_k]} = y|_{[t_0,t_k]}\}$, $k = 1, m-1$.

For, $x_k \in C([t_0, t_k], \mathbb{B})$, $k = 1, m-1$, we denote, $X_{x_k} := \{y \in C([t_0, t_k+1], \mathbb{B}) \mid y|_{[t_0,t_k]} = x_k\}$.

The second basic result of this paper is the following.

Theorem 4.1 (Theorem of step by step contraction). We suppose that:

1. V has the Volterra property;
2. V_1 is a contraction;
3. V_k is a G_{k-1}-contraction, for $k = \frac{2}{m}$.

Then:

(i) $F_V = \{x^*\}$;

(ii) $x^*|_{[t_0,t_1]} = V_1^\infty(x)$, $\forall x \in C([t_0,t_1], \mathbb{B})$,

$x^*|_{[t_0,t_2]} = V_2^\infty(x)$, $\forall x \in X_{x^*}|_{[t_0,t_1]}$,

\vdots

$x^*|_{[t_0,t_{m-1}]} = V_{m-1}^\infty(x)$, $\forall x \in X_{x^*}|_{[t_0,t_{m-2}]}$.

(iii) \(x^* = V^\infty(x), \forall x \in X\big|_{[t_0,t_{m-1}]} \).

Proof. It follows from successive (step by step !) application of Theorem 3.4 for the pairs, \((V_{k+1}, V_k)\), \(k = 1, m - 1\), with \(V_{k+1}\) as \(V\) and \(V_k\) as \(V_1\).

Conjecture 4.2. In the condition of Theorem 4.1, the operator \(V\) is PO, with respect to uniform convergence on \(C([a,b], \mathbb{R})\).

Example 4.3. For \(K \in C([a,b] \times [a,b] \times \mathbb{R})\) we consider the following functional integral equation with maxima,

\[
x(t) = \int_a^t K(t,s, \max_{\theta \in [a,s]} x(\theta))ds, \quad t \in [a,b] \tag{4.1}
\]

By step by step contraction principle we shall prove that, if there exists \(L_K > 0\) such that,

\[
|K(t,s,u) - K(t,s,v)| \leq L_K|u - v|, \quad \forall t, s \in [a,b], \forall u, v \in \mathbb{R},
\]

then the equation (4.1) has in \([a,b]\) a unique solution.

Indeed, let \(m \in \mathbb{N}^*\) be such that, \(\frac{L_K(b-a)}{m} < 1\). Let, \(V : C[a,b] \rightarrow C[a,b]\) be defined by,

\[V(x)(t) := \text{the second part of (4.1)}.\]

First, we remark that \(V\) has the Volterra property. In this case:

\[V_1 : C[t_0,t_1] \rightarrow C[t_0,t_1], \quad V_1(x)(t) = \int_{t_0}^t K(t,s, \max_{\theta \in [t_0,s]} x(\theta))ds, \quad t \in [t_0,t_1].\]

A Lipschitz constant for \(V_1\) is, \(\frac{L_K(b-a)}{m}\). So, \(V_1\) is a contraction with respect to max-norm.

In a similar way, \(V_2\) is a \(G_1\)-contraction, \(V_k\) is a \(G_{k-1}\)-contraction and \(V\) is \(G_{m-1}\)-contraction. So, we are in the conditions of Theorem 4.1. From this theorem we have that: The equation (4.1) has in \([a,b]\) a unique solution, \(x^*\). Moreover,

- for \(t \in [t_0,t_1]\), \(x^*(t) = \lim_{n \rightarrow \infty} x_n(t)\), where \(x_0 \in C[t_0,t_1]\), \(x_{n+1}(t) = \int_{t_0}^t K(t,s, \max_{\theta \in [t_0,s]} x_n(\theta))ds;\)
- for \(t \in [t_0,t_2]\), \(x^*(t) = \lim_{n \rightarrow \infty} x_n(t)\), where \(x_0 \in C[t_0,t_2]\) with \(x_0 |_{[t_0,t_1]} = x^* |_{[t_0,t_1]}\), and \(x_{n+1}(t) = \int_{t_0}^t K(t,s, \max_{\theta \in [t_0,s]} x_n(\theta))ds, \quad n \in \mathbb{N};\)
- for \(t \in [t_0,t_m]\), \(x^*(t) = \lim_{n \rightarrow \infty} x_n(t)\), where \(x_0 \in C[t_0,t_m]\) with \(x_0 |_{[t_0,t_{m-1}]} = x^* |_{[t_0,t_{m-1}]},\) and \(x_{n+1}(t) = \int_{t_0}^t K(t,s, \max_{\theta \in [t_0,s]} x_n(\theta))ds.\)

Remark 4.4. In a similar way as in the Example 3.6, by Generalized fiber contraction theorem, we have that, for \(V\) in Example 4.3, the Conjecture 4.2 is a theorem.

Example 4.5. For \(f \in C([a,b] \times \mathbb{R})\), we consider the following Cauchy problem

\[
x'(t) = f(t, \max_{\theta \in [a,t]} x(\theta)), \quad t \in [a,b] \tag{4.2}
\]

\[x(a) = 0 \tag{4.3}\]

This problem with \(x \in C^1[a,b]\) is equivalent with the following functional integral equation with maxima, in \(C[a,b]\),

\[x(t) = \int_a^t f(s, \max_{\theta \in [a,s]} x(\theta))ds.\]
From the result, in Example 4.3, we have that, if there exists \(L_f > 0 \) such that,
\[
|f(t,u) - f(t,v)| \leq L_f |u - v|, \quad \forall \ t \in [a, b], \ \forall \ u, v \in \mathbb{R},
\]
then the equation (4.3) has in \(C[a, b] \) a unique solution, i.e., the Cauchy problem (4.2) has in \(C^1[a, b] \) a unique solution.

Remark 4.6. For functional differential equations see: [1], [6], [11], [12], [16], [22], ...

Remark 4.7. For operators with Volterra property see: [10], [21], [15] and the references therein.

5. **Step by step generalized contraction principles**

There is a large class of generalized contraction principle (see, for example, [24], [2], [17]). As an example in what follows, we consider the case of \(\varphi \)-contractions.

Let \((X,d)\) be a metric space, \(G \subset X \times X \) a nonempty subset and \(f : X \to X \) be an operator.

Definition 5.1. Let \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a comparison function. By definition, \(f \) is a \((G,\varphi)\)-contraction if,
\[
d(f(x), f(y)) \leq \varphi(d(x,y)), \quad \forall \ x, y \in G.
\]

In the terms of notations in section 4, in a similar way as in the case of Theorem 4.1 we have:

Theorem 5.2 (Theorem of step by step \(\varphi \)-contraction). We suppose that:

(1) \(V \) has the Volterra property;

(2) \(V_1 \) is a \(\varphi \)-contraction;

(3) \(V_k \) is a \((G_{k-1},\varphi)\)-contraction, for \(k = 2, m \).

Then:

(i) \(F_V = \{x^*\} \);

(ii)
\[
x^*|_{[t_0,t_1]} = V^\infty_1(x), \quad \forall \ x \in C([t_0,t_1], \mathbb{B}),
\]
\[
x^*|_{[t_0,t_2]} = V^\infty_2(x), \quad \forall \ x \in X_{x^*}|_{[t_0,t_1]},
\]
\[
\vdots
\]
\[
x^*|_{[t_0,t_{m-1}]} = V^\infty_{m-1}(x), \quad \forall \ x \in X_{x^*}|_{[t_0,t_{m-2}]}.
\]

(iii) \(x^* = V^\infty(x), \forall \ x \in X_{x^*}|_{[t_0,t_{m-1}]} \).

Problem 5.3. For which generalized contractions we have step by step corresponding result? If such generalized contractions are found, then the problem is to give relevant applications of such result.
References