Set Inner Amenability for Semigroups

Moslem Amini Niaa, Ali Ebadianb

aDepartment of Mathematics, Payame Noor University, Tehran, Iran.
bDepartment of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Abstract

In this paper, we present a new concept of inner amenability for a non-empty arbitrary subset A of discrete semigroup S called A-inner amenability. This condition is considerably weaker than ordinary inner amenability. Further, we show some relationships between this version of inner amenability and Følner’s condition.

Keywords: Set amenability, set inner amenability, semigroup.

2010 MSC: 43A07.

1. Introduction

Throughout this paper, S will denote a discrete semigroup. We shall use $\ell^\infty(S)$ to denote the Banach space of bounded real-valued functions on S with the supremum norm. For every subset A of S, let χ_A denote its characteristic function, that is

$$
\chi_A(s) = \begin{cases}
1 & s \in A \\
0 & s \notin A
\end{cases}
$$

A mean is a linear functional $m \in \ell^\infty(S)^*$ such that $m(\chi_S) = \|m\| = 1$. For each $s \in S$ and $f \in \ell^\infty(S)$ we define sf and fs on S by $(sf)(t) = f(st)$ and $(fs)(t) = f(ts)$ for all $t \in S$. We say that $m \in \ell^\infty(S)^*$ is invariant if $m(sf) = m(f) = m(fs)$ for all $s \in S$ and $f \in \ell^\infty(S)$. A semigroup S is said to be amenable if it has an invariant mean m on $\ell^\infty(S)$. Also, let $\ell^1(S)$ denote the Banach space of all real-valued functions φ on S such that $\|\varphi\|_1 := \sum_{x \in S} |\varphi(x)| < \infty$. With pointwise addition and scalar multiplication, and with convolution

$$
(\varphi \ast \psi)(x) = \sum_{st=x} \varphi(s)\psi(t) \quad (x \in S),
$$

Email addresses: amininia.math@yahoo.com (Moslem Amini Nia), ebadian.ali@gmail.com (Ali Ebadian)

Received June 5, 2019, Accepted: August 25, 2020, Online: August 28, 2020.
as product, \(\ell^1(S) \) is a Banach algebra.

We say that \(m \in \ell^\infty(S)^* \) is inner invariant mean if
\[
m(a f) = m(f a),
\]
for all \(s \in S \) and \(f \in \ell^\infty(S) \). Following Ling [11], a semigroup \(S \) is said to be inner amenable if it has an inner invariant mean \(m \) on \(\ell^\infty(S) \).

We will show that many results concerning inner amenability of semigroups have similar analogues for \(A \)-inner amenability. Finally, a number of equivalent conditions characterizing \(A \)-inner amenable semigroups is given.

2. Set inner amenability for semigroup

We start off with the following definition, which is the most important here.

Definition 2.1. Let \(S \) be a semigroup and \(\phi \neq A \subseteq S \). We say that a mean \(m \) on \(\ell^\infty(S) \), is an inner \(A \)-invariant mean if for all \(a \in A \) and \(f \in \ell^\infty(S) \) we have
\[
m(a f) = m(f a).
\]

A semigroup \(S \) which admits inner \(A \)-invariant means is called \(A \)-inner amenable.

In other words, invariance of \(m \) is only required in the subsets of \(S \). It follows immediately that every inner amenable semigroup is \(A \)-inner amenable for all subsets \(A \) of \(S \). But the converse is not true in general. (see Examples 3.2 and 3.4)

For an arbitrary non-empty subset \(A \) of semigroup \(S \), we denote by \(\mathcal{H}(A) \), the real linear span of functions of the form \(a f - f a \), where \(a \in A \) and \(f \in \ell^\infty(S) \). In the following theorem, a sequence of characterizations of \(A \)-inner amenable semigroup is given.

Theorem 2.2. Let \(S \) be a semigroup with non-empty subset \(A \). Then the following properties are equivalent:

(a) \(S \) is an \(A \)-inner amenable semigroup.

(b) for every \(h \in \mathcal{H}(A) \), \(\sup\{h(x) : x \in S\} \geq 0 \).

(c) \(\inf\{\|1 - h\|_\infty : h \in \mathcal{H}(A)\} = 1 \).

Proof. (a) \(\Rightarrow\) (b). Let \(m \) be an inner \(A \)-invariant mean on \(\ell^\infty(S) \). If \(h \in \mathcal{H}(A) \), then \(\sup\{h(x) : x \in S\} \geq m(h) = 0 \). Thus, the property (b) holds.

(b) \(\Rightarrow\) (c). For every \(h \in \mathcal{H}(A) \), we have
\[
0 \leq \sup\{-h(x) : x \in S\} = - \inf\{h(x) : x \in S\}.
\]

This shows that, \(\inf\{h(x) : x \in S\} \leq 0 \). Hence, for any \(\epsilon > 0 \), there exists \(x_0 \in S \) such that \(h(x_0) < \epsilon \), and so \(1 - h(x_0) > 1 - \epsilon \). Therefore, \(\|1 - h\|_\infty \geq 1 \) for any \(h \in \mathcal{H}(A) \). But \(0 \in \mathcal{H}(A) \), \(\inf\{\|1 - h\|_\infty : h \in \mathcal{H}(A)\} \leq \|1 - 0\|_\infty = 1 \).

(c) \(\Rightarrow\) (a). Assume that the property (c) holds. Now by the Hahn-Banach theorem, there exists a linear functional \(m \) on \(\ell^\infty(S) \) with norm one such that \(m(\mathcal{H}(A)) = \{0\} \) and \(m(1) = \inf\{\|1 - h\|_\infty : h \in \mathcal{H}(A)\} \). So \(m \) is an inner \(A \)-invariant mean on \(\ell^\infty(S) \).

A non-empty subset \(A \) of \(S \) is said to act injectively on the left (right) of semigroup \(S \), if \(ax = ay \) (\(xa = ya \)) implies \(x = y \) for every \(a \in A, x, y \in S \). We say that \(A \) acts injectively on the semigroup \(S \), if it acts on both left and right of \(S \). In particular, if \(S \) is a cancellative semigroup, then every non-empty subset of \(S \) acts injectively on \(S \).
Theorem 2.3. Let A act injectively on the left of semigroup S. Then S is A-inner amenable if and only if $\mathcal{H}(A)$ is not norm dense in $\ell^\infty(S)$.

Proof. We suppose that m be a nonzero self-adjoint functional $m \in \ell^\infty(S)^*$ such that $m(\mathcal{H}(A)) = 0$. Consider the decomposition $m = m^+ - m^-$, such that

$$m^+(f) = \sup\{m(g) : 0 \leq g \leq f\}$$

and

$$m^-(f) = -\inf\{m(g) : 0 \leq g \leq f\},$$

for all $f \in \ell^\infty(S)$ with $f \geq 0$. A similar proof of Theorem 2 of [11], shows that m^+ and m^- are inner A-invariant mean on $\ell^\infty(S)$. \hfill \Box

In the following proposition, we see that increasing union of a family of A-inner amenable semigroups is A-inner amenable.

Proposition 2.4. Let $\{S_\alpha\}_{\alpha \in I}$ be a family of subsemigroups of S such that for each $\alpha \in I$, S_α is A_α-inner amenable and $A = \bigcup_{\alpha \in I} A_\alpha$ with the following conditions:

(a) for each S_α, S_β that are A_α-inner amenable and A_β-inner amenable, respectively, there exists $S_\gamma \supset S_\alpha \cup S_\beta$ such that S_γ is A_γ-inner amenable with $A_\gamma \supset A_\alpha \cup A_\beta$.

(b) $S = \bigcup_{\alpha \in I} S_\alpha$.

Then S is A-inner amenable.

Proof. Assume that $h = \sum_{k=1}^n (a_k(f_k) - (f_k)a_k)$ such that $f_k \in \ell^\infty(S)$, $a_k \in A$. By the assumption, there exists a S_λ such that $a_k \in A_\lambda$. Since S_λ is A_λ-inner amenable, it follows from Theorem 2.2 that $\sup\{h(x) : x \in S_\lambda\} \geq 0$. In particular, $\sup\{h(x) : x \in S\} \geq 0$. Again by Theorem 2.2, S is A-inner amenable. \hfill \Box

Remark 2.5. A subsemigroup of an A-inner amenable semigroup need not be A-inner amenable. As an example let S be any non A-inner amenable semigroup, and let S^0 contain S and one new element o such that $os = so = oo = o$, and S is a subsemigroup of S^0. Then S^0 has an inner A-invariant mean: $m(f) = f(o)$, whereas S is not an A-inner amenable.

Theorem 2.6. Let T be a subsemigroup of S and $A \subseteq T$. Then T is an A-inner amenable if and only if S is an A-inner amenable with mean m such that $m(\chi_T) = 1$.

Proof. Let $\theta : T \rightarrow S$ be the embedding map. Then it induces $\vec{\theta} : \ell^\infty(S) \rightarrow \ell^\infty(T)$ by $\vec{\theta}(f) = f|_{T}$. It is easily that $\vec{\theta}$ is bounded and linear. Consider $\vec{\theta}^* : \ell^\infty(T)^* \rightarrow \ell^\infty(S)^*$. Now suppose that $m \in \ell^\infty(S)^*$ is an inner A-invariant mean. Clearly $\vec{\theta}^*(m)$ is a mean on $\ell^\infty(S)$. Also, for any $f \in \ell^\infty(S)$, $a \in A$, it is easy to see that

$$\vec{\theta}(af) = (af)|_{T} = a(f|_{T}) = a(\vec{\theta}(f)),$$

and

$$\vec{\theta}(f_a) = (f_a)|_{T} = (f|_{T})_a = (\vec{\theta}(f))_a.$$

Therefore, for all $f \in \ell^\infty(S)$, $a \in A$, we get

$$(\vec{\theta}^*(m))(af) = m(\vec{\theta}(af)) = m(a(\vec{\theta}(f))) = m((\vec{\theta}(f))_a) = (\vec{\theta}^*(m))(f_a).$$

This means that, $\vec{\theta}^*(m)$ is an inner A-invariant mean on $\ell^\infty(S)$. Also,

$$\vec{\theta}^*(m)(\chi_T) = m(\vec{\theta}(\chi_T)) = m(\chi_T|_{T}) = m(1) = 1.$$
Conversely, Suppose that m is an inner A-invariant mean on $ℓ^∞(S)$ such that $m(χ_T) = 1$. Define the mapping $ϕ : ℓ^∞(T) → ℓ^∞(S)$ by

$$ϕ(f)(t) = \begin{cases} f(t) & t \in T \\ 0 & t \in S \setminus T \end{cases}$$

It is obvious that $ϕ$ is a bounded and linear. Consider $ϕ^* : ℓ^∞(S)^* → ℓ^∞(T)^*$. For any $f \in ℓ^∞(T)$ with $f \geq 0$, we have $ϕ(f) \geq 0$. It is easy to see that $ϕ^*(m)$ is a mean on $ℓ^∞(T)$. Also, for any $f \in ℓ^∞(T)$, $a \in A$ and $t \in T$, we get

$$(ϕ(a) - a(ϕ(f)))(t) = (a(f))(t) - (ϕ(f))(at) = f(at) - f(at) = 0.$$

So, $(ϕ(a) - a(ϕ(f)))|_T = 0$, and

$$|ϕ(a) - a(ϕ(f))| \leq ||ϕ(a) - a(ϕ(f))||_{A, S \setminus T}.$$

This implies that $m(ϕ(a) - a(ϕ(f))) = 0$, or, $m(ϕ(a)f) = m(ϕ(f))$. Similarly, one can show that $m(ϕ(f_a)) = m(ϕ(f))$. Therefore,

$$(ϕ^*(m))(a) = m(ϕ(a)f) = m(ϕ(f))$$

$$= m((ϕ(f))a) = m(ϕ(f_a))$$

$$= (ϕ^*(m))(f_a).$$

This shows that, $ϕ^*(m)$ is an inner A-invariant mean on $ℓ^∞(T)$.

Given semigroups S and T, a map $ϕ : S → T$ is called a homomorphism if it satisfies

$$ϕ(s_1s_2) = ϕ(s_1)ϕ(s_2) (s_1, s_2 \in S).$$

Theorem 2.7. Let S, T be semigroups and $ϕ$ be a homomorphism of S onto T. If S is A-inner amenable, then T is $ϕ(A)$-inner amenable.

Proof. Assume that m is an inner A-invariant mean on $ℓ^∞(S)$. Put $m_a(f) = m(foϕ)$ for each $f \in ℓ^∞(T)$. Now for every $s \in S, b \in B = ϕ(A)$ and $f \in ℓ^∞(T)$ we have

$$bf_0ϕ(s) = f(bϕ(s)) = f(ϕ(a)ϕ(s)) = f(ϕ(as)) = (foϕ)(as) = a(foϕ)(s),$$

and

$$f_0ϕ(s) = f(ϕ(s)b) = f(ϕ(s)ϕ(a)) = f(ϕ(sa)) = (foϕ)(sa) = (foϕ)a(s).$$

where $a \in A$ is such that $ϕ(a) = b$. So, $bf_0ϕ = a(foϕ)$ and $f_0ϕ = (foϕ)a$. It follows from this relations that

$$m_a(bf) = m(ϕ(foϕ)) = m((foϕ)a) = m(f_0ϕ) = m_0(f).$$

Thus m_0 is an inner $ϕ(A)$-invariant mean.

Let S and T be semigroups. Then $S \times T$ is a semigroup with the operation $(s_1,t_1)(s_2,t_2) = (s_1s_2,t_1t_2)$ for all $s_1, s_2 \in S$ and $t_1, t_2 \in T$. Also we can consider $ℓ^∞(S \times T)$ as a Banach $S \times T$-bimodule via

$$(s,t)f(s',t') = f(ss',tt'), \quad (f(s,t))(s',t') = f(s's,t't),$$

for all $s, s' \in S, t, t' \in T$ and $f \in ℓ^∞(S \times T)$. The homomorphisms $π_S : S \times T → S$ and $π_T : S \times T → T$ with $π_S(s,t) = s, π_T(s,t) = t$, respectively, are called projection homomorphisms.

Theorem 2.8. Let S, T be semigroups such that $ℓ^∞(S \times T) = ℓ^∞(S) \times ℓ^∞(T)$. S and T are A-inner amenable and B-inner amenable, respectively if and only if $S \times T$ is $(A \times B)$-inner amenable.
Proof. Suppose that \(m \) and \(n \) are inner \(A \)-invariant and inner \(B \)-invariant means for \(\ell^\infty(S) \) and \(\ell^\infty(T) \), respectively. Define the mean \(m_o \) on \(\ell^\infty(S \times T) \) by \(m_o(f,g) = m(f) n(g) \) for all \(f \in \ell^\infty(S) \) and \(g \in \ell^\infty(T) \). Then for each \((a,b) \in A \times B\)

\[
m_o((a,b)(f,g)) = m_o(a f, b g) = m(a f) n(b g) \]

\[
= m(f_a) n(g_b) = m_o(f_a, g_b) \\
= m_o((f,g)_{(a,b)}).
\]

This means that \(m_o \) is inner \((A \times B)\)-invariant mean.

Conversely, suppose that \(S \times T \) is \((A \times B)\)-inner amenable. Then by projection homomorphism \(\pi_S(A \times B) = A \) and Theorem 2.7, we obtain that \(S \) is \(A \)-inner amenable. Similarly, we conclude that \(T \) is \(B \)-inner amenable.

Theorem 2.9. Let \(S, T \) be two semigroups such that \(S \) and \(T \) are \(A \)-amenable and \(B \)-inner amenable, respectively. Then \(S \times T \) is \((A \times B)\)-inner amenable.

Proof. Suppose that \(m \) be an \(A \)-invariant mean on \(\ell^\infty(S) \) and \(n \) be an inner \(B \)-invariant mean on \(\ell^\infty(T) \). For each \(f \in \ell^\infty(S \times T) \) and \((s,t) \in S \times T\), we consider \(f_T \in \ell^\infty(T) \) and \(f_S^j \in \ell^\infty(S) \) by \(f_S^j(s) = f(s,t) \) and \(f_T(t) = m(f_S^j) \). Now, define the mean \(m_o \) on \(\ell^\infty(S \times T) \) by

\[
m_o(f) = n(f_T) \text{ for all } f \in \ell^\infty(S \times T).
\]

For every \((a,b) \in A \times B \) it follows that \((f_S^j)_{(a,b)} = a(f_S^j) \) and \((f_S^j)_{(a,b)} = (f_S^j)_{(a,b)} b \). Furthermore, for every \(t \in T \)

\[
((a,b)f)_T(t) = m((a,b)f_T) = m(a(f_T)) \\
= m(f_S^j) = (f_T(bt)) \\
= b(f_T)(t).
\]

That is, \((a,b)f)_T = b(f_T)\). Similarly, one find that \((f_T)(a,b) = (f_T)(a,b)\).

For every \(f \in \ell^\infty(S \times T) \) and \((a,b) \in A \times B \) we get

\[
m_o((a,b)f) = n((a,b)f_T) = n(b(f_T)) \\
= n(f_T) = n((f_T)b) \\
= m_o(f_{(a,b)}).
\]

It follows that \(m \) is an inner \((A \times B)\)-invariant mean. \(\square \)

3. Examples of \(A \)-inner amenability

Example 3.1. If there exists an element \(x \) in semigroup \(S \) that commutes with all \(a \in A \), then the Dirac measure \(\delta_x \) for all \(f \in \ell^\infty(S) \) is an inner \(A \)-invariant mean on \(\ell^\infty(S) \).

\[
\delta_x(a f) = f(ax) = f(xa) = \delta_x(f_a).
\]

In the following examples, we study \(A \)-inner amenability over a left (right) zero semigroup, that is a semigroup whose multiplication is defined by \(st = s \) \((st = t)\) for all \(s, t \in S \). We denote the cardinal number of a set \(A \) by \(|A|\).

Example 3.2. Let \(S \) be a left zero semigroup, then for any subset \(A \) of \(S \):

(i) if \(|A| = 1\), then \(S \) is \(A \)-inner amenable;

(ii) if \(|A| \geq 2\), then \(S \) is not \(A \)-inner amenable.
Proof. (i) Assume that \(A = \{a\} \). Define \(m \in \ell^\infty(S)^* \) by \(m(f) = f(a) \) for every \(f \in \ell^\infty(S) \). Then we obtain \(m(a_f) = a f(a) = f(aa) = f_a(a) = m(f_a) \). This shows that \(S \) is \(A \)-inner amenable.

(ii) Clearly for each \(a \in A \) we have
\[
a f = f(a) \quad \text{and} \quad f_a = f.
\]

Now, if we suppose that \(S \) is \(A \)-inner amenable with an inner \(A \)-invariant mean \(m \), then for every \(a \in A \) and \(f \in \ell^\infty(S) \), we have \(m(a_f) = m(f_a) \). Therefore \(f(a) = m(f) \). Now if we consider \(a \neq b \in A \) and \(f = \chi_{\{a\}} \) then we obtain
\[
1 = f(a) = m(f) = f(b) = 0.
\]

This is a contradiction. \(\square \)

Example 3.3. Let \(\mathbb{F}_2 \) be free group on two generators \(a \) and \(b \). If \(A \) is the set of elements of \(\mathbb{F}_2 \) that begin with \(a \) or \(a^{-1} \) when written as reduced words. Then \(\mathbb{F}_2 \) is not \(A \)-inner amenable.

Proof. We consider \(f = \chi_A \) and
\[
h = ((ba^{-1}f)ab^{-1} - ab^{-1}(ba^{-1}f)) + ((b^{-1}a^{-1}f)aba - aba(b^{-1}a^{-1}f)).
\]

Clearly \(h \in \mathcal{H}(A) \). Now by Theorem 2.2 it is enough to prove that the function \(h \) has the property that, \(\sup \{h(x) : x \in \mathbb{F}_2\} < 0 \). For each \(x \in \mathbb{F}_2 \) we have
\[
h(x) = f(ba^{-1}xab^{-1}) + f(b^{-1}a^{-1}xaba) - f(ax) - f(x).
\]

Now the argument as in the proof of Theorem (17.16) of [7] shows \(\sup \{h(x) : x \in \mathbb{F}_2\} \leq -1 \). \(\square \)

By use of Theorem 2.2 in the following example, we study \(A \)-inner amenability over a right zero semigroup.

Example 3.4. Let \(S \) be a right zero semigroup, then for any subset \(A \) of \(S \) we have

(i) If \(|A| = 1 \), then \(S \) is \(A \)-inner amenable.

(ii) If \(|A| \geq 2 \), then \(S \) is not \(A \)-inner amenable.

Proof. (i) Assume that \(A = \{a\} \). Since for every \(h \in \mathcal{H}(A) \) and \(x \in S \) we have
\[
h(x) = \sum_{k=1}^{n} ((f_k)_a - a(f_k))(x)
\]
\[
= \sum_{k=1}^{n} (f_k(xa) - f_k(ax))
\]
\[
= \sum_{k=1}^{n} (f_k(a) - f_k(x)).
\]

Then by set \(x = a \) we have \(\sup \{h(x) : x \in S\} \geq 0 \). This shows that \(S \) is \(A \)-inner amenable.

(ii) For \(a \neq b \in A \), we take \(h = (a(\chi_{\{a\}}) - (\chi_{\{a\}})a) + (b(\chi_{\{b\}}) - (\chi_{\{b\}})b) \). Hence for each \(x \in S \) we obtain
\[
h(x) = (a(\chi_{\{a\}}) - (\chi_{\{a\}})a)(x) + (b(\chi_{\{b\}}) - (\chi_{\{b\}})b)(x)
\]
\[
= (\chi_{\{a\}}(ax) - (\chi_{\{a\}})(xa)) + (\chi_{\{b\}}(bx) - (\chi_{\{b\}})(xb))
\]
\[
= (\chi_{\{a\}}(x) + \chi_{\{b\}}(x) - 2.
\]

and this implise that \(\sup \{h(x) : x \in S\} \leq -1 \). Hence by theorem 2.2 \(S \) is not \(A \)-inner amenable. \(\square \)
4. Følner’s condition

Before stating the following theorem, recall that a mean in $\ell^1(S)$ is called a finite mean if it is a convex combination of the Dirac measures. We shall use Φ denote the set of all finite means and δ_x denotes the Dirac measure at $x \in S$. It is obvious that Φ is convex subset of $\ell^1(S)$. In fact, Φ is convex hull of S.

Theorem 4.1. Let S be a semigroup and $A \subseteq S$. Then the following statements are equivalent:

(a) S is A-inner amenable.

(b) there is a net (φ_α) of finite means such that $\delta_a \ast \varphi_\alpha - \varphi_\alpha \ast \delta_a \rightarrow 0$ in the weak topology of $\ell^1(S)$, for every $a \in A$.

(c) there is a net (ψ_α) of finite means such that $\|\delta_a \ast \psi_\alpha - \psi_\alpha \ast \delta_a\|_1 \rightarrow 0$ for every $a \in A$.

Proof. (a) \Rightarrow (b). Let m be an inner A-invariant mean on $\ell^\infty(S)$. Since $m \in \ell^\infty(S)^*$, we can find a net (φ_α) of finite means such that $\lim_{\alpha} \varphi_\alpha = m$ in the weak* topology of $\ell^\infty(S)^*$. Then for all $f \in \ell^\infty(S)$ and $a \in A$,

$$f(\delta_a \ast \varphi_\alpha - \varphi_\alpha \ast \delta_a) = \varphi_\alpha(af) - \varphi_\alpha(fa) \rightarrow m(af) - m(fa) = 0.$$

It follows that $\delta_a \ast \varphi_\alpha - \varphi_\alpha \ast \delta_a \rightarrow 0$ in the weak topology of $\ell^1(S)$, for every $a \in A$.

(b) \Rightarrow (c). Let (φ_β) be a net as in (b). Using an idea of Ling [11], we define linear map $T : \ell^1(S) \rightarrow \prod_{a \in A} \ell^1(S)$ by $T(\varphi)(a) = \delta_a \ast \varphi - \varphi \ast \delta_a$ for every $\varphi \in \ell^1(S), a \in A$. Now by assumption, $T(\varphi_\beta)(a) = \delta_a \ast \varphi_\beta - \varphi_\beta \ast \delta_a \rightarrow 0$ weakly in $\ell^1(S)$, for every $a \in A$. This means that zero lies in the weak closure of $T(\Phi)$. Since $\prod_{a \in A} \ell^1(S)$ with product of the norm topology is a locally convex space and Φ is convex, the closure of $T(\Phi)$ in this topology contains 0. Thus, there exists a subnet $(\varphi_\alpha) \subseteq (\varphi_\beta)$ such that $\lim_{\alpha} \delta_a \ast \psi_\alpha - \psi_\alpha \ast \delta_a\|_1 \rightarrow 0$ for every $a \in A$.

(c) \Rightarrow (a). Since convergence in norm implies convergence in weak topology, this implication is trivial.

(b) \Rightarrow (a). Let (φ_α) be a net satisfying the convergence in (b). By Alaoglu’s theorem, it has a weak* convergent subnet. By passing to such a subnet if necessary, there is a $m \in \ell^\infty(S)^*$ such that $\lim_{\alpha} \varphi_\alpha = m$ in the weak* topology of $\ell^\infty(S)^*$. Therefore m is a mean on $\ell^\infty(S)$, and for all $a \in A, f \in \ell^\infty(S)$

$$m(af) - m(fa) = \lim_{\alpha} (\varphi_\alpha(af) - \varphi_\alpha(fa)) = \lim_{\alpha} (\delta_a \ast \varphi_\alpha - \varphi_\alpha \ast \delta_a)(f) = 0.$$

\]

For each $s \in S$ we put $s^{-1}A = \{t \in S : st \in A\}$ and $As^{-1} = \{t \in S : ts \in A\}$. We also note that $\frac{1}{|A|}\chi_A$ defines an element in $\ell^1(S)$.

Lemma 4.2. Let A acts injectively on the right of semigroup S, then for every $B \subseteq A$ and $a \in A$

$$||\chi_B \ast \delta_a - \delta_a \ast \chi_B||_1 = 2|Ba \setminus aB|.$$

Proof. For $a \in A$ and $B \subseteq A$, we get

$$(\delta_a \ast \chi_B)(x) = \sum_{as=x} \chi_B(s)$$

$$= \sum_{s \in a^{-1}\{x\}} \chi_B(s)$$

$$= |B \cap a^{-1}\{x\}|.$$

Similarly, we obtain $(\chi_B \ast \delta_a)(x) = |B \cap \{x\}a^{-1}|$. It is easy to see that

$$(\chi_B \ast \delta_a - \delta_a \ast \chi_B)(x) = \begin{cases} |B \cap \{x\}a^{-1}| & \text{if } x \in Ba \setminus aB \\ -|B \cap a^{-1}\{x\}| & \text{if } x \in aB \setminus Ba \\ |B \cap \{x\}a^{-1}| - |B \cap a^{-1}\{x\}| & \text{if } x \in aB \cap Ba \\ 0 & \text{if } x \notin aB \cup Ba \end{cases}$$
Since A acts injectively on the right of semigroup S, then for each $x \in Ba$ we obtain $|B \cap \{x\}a^{-1}| = 1$. This implies that

$$
\|\chi_{B} \ast \delta_{a} - \delta_{a} * \chi_{B}\|_{1} = \sum_{x \in Ba \setminus aB} 1 + \sum_{x \in aB \setminus Ba} |B \cap a^{-1}\{x\}| + \sum_{x \in aB \cap Ba} (|B \cap a^{-1}\{x\}| - 1)
$$

$$
= |Ba \setminus aB| + \sum_{x \in Ba} |B \cap a^{-1}\{x\}| - |aB \cap Ba|
$$

$$
= |Ba \setminus aB| + |B| - |aB \cap Ba|
$$

$$
= |Ba \setminus aB| + |Ba \setminus aB|
$$

$$
= 2|Ba \setminus aB|
$$

\[\square\]

Theorem 4.3. Let A act injectively on the right of semigroup S. If for any finite set $F \subseteq A$ and any $\varepsilon > 0$, there exists a finite non-empty set $B \subseteq A$ such that $|Ba \setminus aB| < \varepsilon|B|$ for all $a \in F$, then S is A-inner amenable.

Proof. By the assumption there exists a net of finite non-empty sets $B_{\alpha} \subseteq A$ such that

$$
|B_{\alpha} \setminus aB_{\alpha}|/|B_{\alpha}| \longrightarrow 0 \quad \text{for all} \quad a \in A.
$$

By Lemma 4.2 we have

$$
\|\chi_{B_{\alpha}} \ast \delta_{a} - \delta_{a} * \chi_{B_{\alpha}}\|_{1} = |B_{\alpha} \setminus aB_{\alpha}|.
$$

Set $\varphi_{a} = |B_{\alpha}|^{-1} \chi_{B_{\alpha}}$. Then for α, and $a \in A$

$$
\|\delta_{a} * \varphi_{a} - \varphi_{a} * \delta_{a}\|_{1} \longrightarrow 0.
$$

Now the proof is complete by Theorem 4.1. \[\square\]

Remark 4.4. The assumption of Theorem 4.3 ‘that A acts injectively on the right of semigroup S’ is necessary. In fact, any right zero semigroup S is not A-inner amenable if A has at least two elements (see Example 3.2).

References