Comment on strongly preirresolute topological vector spaces

Madhu Rama, Sayed K Elaganb

aDepartment of Mathematics, University of Jammu, Jammu-180006, J& K, India.
bDepartment of Mathematics and Statistics, Faculty of Science, P.O. 888, Taif University, Saudi Arabia.

Abstract

A subset A of a topological space X is said to be pre-open if $A \subseteq Int(Cl(A))$. Let $PO(X)$ denote the family of all pre-open sets in a given topological space X. In general, $PO(X)$ does not form a topology on X. Furthermore, in topological vector spaces, it is not always true that $PO(L)$ forms a topology on L when L is a topological vector space. In this note, we prove that the class of strongly preirresolute topological vector spaces is that subclass of topological vector spaces in which $PO(L)$ forms a topology and thereby we will observe that all results which are proven in [5] concerning strongly preirresolute topological vector spaces are obvious.

Keywords: Pre-open sets strongly preirresolute topological vector spaces.

2010 MSC: 57N17, 57N99.

1. Introduction and the main result

Let (X, \mathcal{O}) (or simply, X) be a topological space. A subset $A \subseteq X$ is called pre-open if $A \subseteq Int(Cl(A))$. The complement of a pre-open set is called pre-closed set. Let $PO(X)$ denote the collection of all pre-open subsets of X. It is well-known that in general, $PO(X)$ does not form a topology on X. Furthermore, consider a topological vector space $L = \mathbb{R}$, where \mathbb{R} is endowed with the standard topology. Now,

let $A = \{x \in \mathbb{Q}: 0 < x < 1\}$ and $B = \{x \in \mathbb{R}: x \notin \mathbb{Q}, 0 < x < 1\} \cup \{\frac{1}{2}\}$ where \mathbb{Q} denotes the set of rational numbers.

Received November 25, 2020; Accepted: March 08, 2021; Online: April 4, 2021.
Obviously, both A and B are pre-open subsets of \mathbb{R} but $A \cap B = \{ \frac{1}{2} \}$ is not pre-open. Thus, we have seen that in topological vector spaces, $PO(L)$ need not form a topology on L when L is a topological vector space.

Definition 1.1. Let X, Y be two topological spaces. A function $f : X \rightarrow Y$ is called p–continuous if the inverse image of any pre-open subset of Y is open in X.

Definition 1.2. A topological space X is called pre-T_2 [3] if for each pair of distinct points x and y in X, there exist disjoint pre-open sets U and V of X such that $x \in U$ and $y \in V$.

Definition 1.3. A subset A of a topological space X is called strongly compact [4] if every cover of A by pre-open sets in X has a finite subcover.

In [5], Rajesh and Vijayabharathi (2013) introduced the notion of strongly preirresolute topological vector spaces and established several results in strongly preirresolute topological vector spaces.

A pair (L, \mathcal{F}) (or simply, L) is called a strongly preirresolute topological vector space if:

- L is a real vector space, and
- \mathcal{F} is a topology on L such that the vector space operations are p–continuous.

In fact, this definition can be extended to all complex vector spaces like topological vector spaces. Evidently, every strongly preirresolute topological vector space is a topological vector space but the converse is not true, in general because $(\mathbb{R}, \mathcal{F})$ is not a strongly preirresolute topological vector space.

This note concerns the paper [5] by Rajesh and Vijayabharathi. We exhibit that all theorems in [5] are the particular cases of well-known results of topological vector spaces which follow directly from the following fact:

Theorem 1.1. Let (L, \mathcal{F}) be a strongly preirresolute topological vector space. Then $PO(L)$ forms a topology on L.

Proof. To prove this theorem, it is enough to show that every pre-open set of L is open. For, let A be any pre-open set of L and let $x \in A$ be any element.

Since the vector addition mapping of cartesian product $L \times L$ into L is p–continuous, there exist open sets U of L containing 0 and V of L containing x such that $U + V \subseteq A$. In particular, $0 + V \subseteq A$. This indicates that x is an interior point of A. Thus, A is open. Hence $PO(L) = \mathcal{F}$.

Corollary 1.1. If (L, \mathcal{F}) is a strongly preirresolute topological vector space, then we have

1. A subset $A \subseteq L$ is strongly compact if and only if it is compact.
2. (L, \mathcal{F}) is pre-T_2 space if and only if it is T_2 space.

Remark 1.1. All results (for example, Theorem 3.9, Theorem 3.11, Theorem 3.13 and Theorem 3.18) in [5] follow directly by Corollary 1.1.1 together with corresponding well-known results in topological vector spaces (for example, see [2, Proposition 2.2.3, Corollary 2.2.4], [6, Theorem 1.10] and [7]).

We now formulate an alternative definition of Hahn Banach Separation Theorem in strongly preirresolute topological vector spaces.

Theorem 1.2. Suppose A, B are disjoint, non-empty convex sets in a strongly preirresolute topological vector space L.

(a) If A is pre-open, then there is a linear continuous map $\varphi : L \rightarrow \mathbb{R}$, $\lambda \in \mathbb{R}$ s.t. $\mathop{\sup}{\{Re \varphi(x) : x \in A\}} < Re \varphi(y)$, for all $y \in B$.

(b) If B is strongly compact, A pre-closed, and L is locally convex, then there is a linear continuous map $\varphi : L \rightarrow \mathbb{R}$, $\lambda \in \mathbb{R}$ and $\epsilon > 0$ s.t. $\forall x \in B$, $y \in A$, $Re \varphi(x) < \lambda < \lambda + \epsilon < Re \varphi(y)$.

Proof. Follows from Theorem 1.4 and [1, Theorem 5.7].
References