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Abstract

The well-known Caristi fixed point theorem has numerous generalizations and modifications. Recently there
have appeared its equivalent dual forms and generalizations based on new concept of lower semicontinuity
from above by several authors. In the present article, we give new proofs of such new versions and their
equivalent formulations by applying our Metatheorem in the ordered fixed point theory.
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1. Introduction

The Banach contraction principle has numerous generalizations or modifications for various types of
spaces with new metrics or topologies and new contractive conditions. Similarly, since the appearances of
the Ekeland variational principle [8-10] and the Caristi fixed point theorem [4], nearly one thousand works
followed on their modifications, equivalents, generalizations, applications, and related topics. Many of them
are concerned with new spaces extending complete metric spaces, new metrics or topologies on them, and
new order relations extending the so-called Caristi order.

While the author was working on such subjects in 1985-2000, in order to give some equivalents of the
Ekeland principle, we obtained a Metatheorem in [18-23] on fixed point theorems related to the order theory.
It claims that certain order theoretic maximal element statements are equivalent to theorems on fixed points,
stationary points, common fixed points, common stationary points of families of maps or multimaps. As
usual in the mathematical community, our Metatheorem was not attracted for a long period.
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Recently in 2022, we came back to our Metatheorem after 22 years have passed and obtained its extended
versions in [24-27] with a large number of new results. The most recent version of them is a modification of
the 2023 Metatheorem in [28]. This article is based on the modification given in [32]. It is applied to the
traditional order theoretic results and, consequently, to the so-called Ordered Fixed Point Theory in [28].
This can be comparable to traditional several fields in the fixed point theory, that is, Analytical, Metric,
and Topological fixed point theories.

Recently there have appeared two types of generalizations of the original Caristi fixed point theorem on
complete metric spaces.

The first kind is to replace the concept of lower semicontinuity of functions in the Caristi theorem by a
little general concept of the lower semicontinuity from above. This concept was derived by Kirk-Saliga [15]
in 2001 and Chen-Cho-Yang [5] in 2002 and followed by Lin-Du [16] in 2007 and Ansari [1] in 2014.

The second kind is the dual versions of the Caristi theorem adopting upper semicontinuity instead of
lower semicontinuity of the real-valued function defining the Caristi order. Such results were appeared in
[1, 5, 16].

In the present article, our modified 2023 Metatheorem in [32] is applied to obtain some equivalent
formulations of the results in [5] and [16] for more useful applications.

Section 2 is to introduce the so-called Extreme (Maximal or Minimal) Element Principle based on our
new 2023 Metatheorem and its particular forms. In Section 3, we introduce our strengthened versions of
the Caristi theorem as a basis of our study in this article. Section 4 devotes to improve and strengthen
the results of Chen-Cho-Yang [5] with new proofs. In Section 5. we obtain equivalent formulations of the
result of Lin-Du [16]. Section 6 is to recall some history related to the equivalences of metric completeness.
Finally, Section 7 devotes to epilogue.

2. Extreme Element Principles

In order to deduce some equivalents of the well-known central result of Ekeland [8-10] on the variational
principle for approximate solutions of problems, we obtained a metatheorem in [17–23]. Later we found more
additional conditions and, consequently, we obtained extended versions of the metatheorem in 2022 [24–27].
Finally we obtained the 2023 Metatheorem in [28] with a large number of applications. Such Metatheorem
consists of several logically equivalent statements and guarantees the truth of all items when so is one of
them. Since 1985, we have shown nearly one hundred cases of such situation. In the present article, we
assume a certain modified form of the 2023 Metatheorem in [32].

Let (X,⪯) be a preordered set; that is, X is a nonempty set and the order ⪯ is reflexive and transitive.
The partial order ⪯ is the one having additional anti-symmetry.

A maximal or minimal element will be called an extreme element. From our new 2023 Metatheorem
in [32], we deduce the following prototype of Extreme Element Principles as in [29] for multimaps having
nonempty values:

Theorem A. Let (X,⪯) be a preordered set and A be a nonempty subset of X. Then the following statements
are equivalent:

(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v ⪯̸ w (resp. w ⪯̸ v) for any
w ∈ X\{v}.

(β) If F is a family of maps f : A → X such that, for any x ∈ A with x ̸= f(x), there exists a y ∈ X\{x}
satisfying x ⪯ y (resp. y ⪯ x), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A → X satisfying x ⪯ f(x) (resp. f(x) ⪯ x) for all x ∈ A with
x ̸= f(x), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ X such that, for any x ∈ A\F (x) there exists y ∈ X\{x}
satisfying x ⪯ y (resp. y ⪯ x). Then F has a common fixed element v ∈ A, that is, v ∈ F (v) for all F ∈ F.
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(ϵ) If F is a family of multimaps F : A ⊸ X such that x ⪯ y (resp. y ⪯ x) holds for any x ∈ A and
any y ∈ F (x)\{x}, then F has a common stationary element v ∈ A, that is, {v} = F (v) for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x} satisfying x ⪯ z (resp.
z ⪯ x), then there exists a v ∈ A ∩ Y .

Remark. (1) Note that we claimed that (α)− (η) are equivalent in Theorem A and did not say that they
are true. For a counter-example, consider the real line R with the usual order. However, we gave many
examples that they are true based on the original sources; see the articles mentioned in our [28].

(2) All the elements v′s in Theorem A are same as we have seen in the proof of Metatheorem in [28],
and (η) simply tells that Y is nonempty when X = A and the location of the common point v.

(3) When F is a singleton, each of (β) − (ϵ) is is denoted (β1) − (ϵ1), respectively. These are also
equivalent to (α)− (η) in Theorem A.

Let (X,⪯) be a preordered set and F : X ⊸ X a multimap. For every x ∈ X, we denote

S+F (x) := {z ∈ X : u ⪯ z for some u ∈ F (x)},

(resp. (S−F (x) := {z ∈ X : z ⪯ u for some u ∈ F (x)}).

From Theorem A, we have several variants in [28] as follows:

Theorem A1. Let (X,⪯) be a partially ordered set, F : X ⊸ X be a multimap, and x0 ∈ X such that
A = (S+F (x0),⪯) (resp. A = (S−F (x0),⪯)) has an upper bound (resp. a lower bound) v ∈ A.

Then the equivalent statements (α)− (η) of Theorem A hold.

For the identity map F = 1X , let

S+(x) := {y ∈ X : x ⪯ y} (resp. S−(x) := {y ∈ X : y ⪯ x}).

Then Theorem A1 reduces to the following:

Theorem A2. Let (X,⪯) be a partially ordered set, and x0 ∈ X such that A =
(S+(x0),⪯) (resp. A = (S−(x0),⪯) has an upper bound (resp. a lower) v ∈ A. Then the equivalent
statements (α)− (η) of Theorem A1 hold.

Let (X,⪯) be a partially ordered set and G(x, y) mean y ≼ x (resp. x ≼ y) in Metatheorem∗ in [32].
Then we have the following:

Theorem A.2.∗ Let (X,⪯) be a partially ordered set, x0 ∈ X, and A = S+(x0) (resp. A = S−(x0)) have
an upper bound (resp. a lower bound) v ∈ A. Then the following equivalent statements hold:

(α) v ∈ A is a maximal (resp. minimal) element, that is, v ⪯̸ w (resp. w ⪯̸ v) for any w ∈ X\{v}.

(θ1) v ∈ A satisfies that, for each chain C in S+(v) (resp. S−(v)) , we have
⋂

x∈C S+(x) ̸= ∅ (resp.⋂
x∈C S−(x) ̸= ∅).

(θ2) v ∈ A satisfies that, for a maximal chain C∗ in S+(v) (resp. S−(v)), we have
⋂

x∈C∗ S+(x) ̸= ∅
(resp.

⋂
x∈C∗ S−(x) ̸= ∅).

For the motivation of this theorem and its proof, we have a long story as shown in [33]. The conditions
(θ1) and (θ2) are originated from [11] and Theorem A2∗ extends a part of ([2], Theorem 5.1). See also ([33],
Theorem 5.1∗).

For multimaps permitting empty values, we derive the following Empty Element Principle from the old
2023 Metatheorem:

Theorem A∗. Let (X,⪯) be a preordered set and A be a nonempty subset of X. Then the following
statements are equivalent:
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(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v ⪯̸ w (resp. w ⪯̸ v) for any
w ∈ X\{v}.

(ζ1) If a multimap F : A ⊸ X such that, for all x ∈ A with F (x) ̸= ∅, there exists y ∈ X\{x} satisfying
x ⪯ y (resp. y ⪯ x), then there exists v ∈ A such that F (v) = ∅.

(ζ2) Let F be a family of multimaps F : A ⊸ X such that, for all x ∈ A with F (x) ̸= ∅, there exists
y ∈ X\{x} satisfying x ⪯ y (resp. y ⪯ x). Then there exists v ∈ A such that F (v) = ∅ for all F ∈ F.

Proof. Note that (ζ2) =⇒ (ζ1) is clear.

(α) =⇒ (ζ2) : By (α) there exists v ∈ A such that v ⪯̸ w (resp. w ⪯̸ v) holds for all w ∈ X\{v}.
Suppose to the contrary, there exists F ∈ F such that F (v) ̸= ∅. By hypothesis, there exists w ∈ X with
w ̸= v and v ⪯ w (resp. w ⪯ v) holds. Therefore it leads a contradiction and F (v) = ∅ for all F ∈ F.

(ζ1) =⇒ (α) : Suppose that, for each x ∈ A, there exists y ∈ X\{x} such that x ⪯ y (resp. y ⪯ x)
holds. Let us define a multimap F : A ⊸ X by

F (x) = {y ∈ X : x ⪯ y} ≠ ∅ (resp. F (x) = {y ∈ X : y ⪯ x} ≠ ∅.)

for all x ∈ A. Then, by (ζ1), there exists v ∈ A such that F (v) = ∅. This is a contradiction. □

A function φ : X → R is said to be lower semicontinuous at x ∈ X if for any sequence {xn} ⊂ X,

lim
n→∞

xn = x ∈ X =⇒ φ(x) ≤ lim
n→∞

inf φ(xn).

Similarly, upper semicontinuity can be defined.
From now on, our key results in this article will be denoted Theorems B, C, D, · · · .

3. Dual Forms of the Caristi Theorem

In our previous article [30], we obtained various forms of Minimal Element Principles from Theorem A
and applied them to known or new works related to minimality. We were based on our 2023 Metatheorem in
[28], a prototype of Minimal Element Principles, and the Brøndsted-Jachymski Principle for the minimality.
These are dual versions of the corresponding ones for the maximality.

From now on Max(⪯) (resp. Min(⪯)) denotes the set of maximal (resp. minimal) elements of the order
⪯, and Fix(f) (resp. Per(f)) denotes the set of all fixed points (resp. periodic) points of a map f : X → X,
respectively.

The following is our strengthened version of the Caristi fixed point theorem given in [28]:

Theorem B. If (X, d) is a complete metric space and φ : X → R+ lower semicontinuous, then in the
Brøndsted order (x ≼ y iff d(x, y) ≤ φ(x)− φ(y)), every progressive map f : X → X (that is, x ≼ f(x) for
all x ∈ X) satisfies

Fix(f) = Per(f) ⊃ Max(≼) ̸= ∅.
In [30], we showed that Theorem A(γ) implies the following dual to the Caristi fixed point theorem:

Theorem C. Let (X,≼) be a partially ordered complete metric space, and a function φ : X → R+ be
upper semicontinuous and bounded from above in the Brøndsted order. Then every anti-progressive map
f : X → X (that is, f(x) ≼ x for all x ∈ X) satisfies

Fix(f) = Per(f) ⊃ Min(≼) ̸= ∅.

Motivated by such results, in [29,30], we obtained various forms of Minimal Element Principles and
applied them to known or new works related to minimality. We were based on our 2023 Metatheorem, a
prototype of Minimal Element Principles, and the Brøndsted-Jachymski Principle for the minimality. These
are duals of the corresponding related results on the maximality.

In the following, Theorems B and C can be improved by adopting new extended concepts of the lower
(or upper) semi-continuity.
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4. Variants due to Chen-Cho-Yang [5]

Kirk-Saliga [15] in 2001 and Chen-Cho-Yang [5] in 2002 introduced the following concept of lower semi-
continuity from above:

Definition 4.1. [5] Let X be a metric space. A function f : X → R ∪ {+∞} is said to be lower
semicontinuous from above if, for any point x ∈ X, xn → x as n → ∞ and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · ·
imply limn→∞ f(xn) ≥ f(x).

Obviously, the usual lower semicontinuity implies lower semicontinuity from above, but the converse does
not hold. In fact, Chen-Cho-Yang [5] gave an example of a function which is lower semicontinuous from
above at a point, but not lower semicontinuous at that point.

Similarly, Lin-Du [16] defined the following motivated by [5]:

Definition 4.1.∗ Let X be a topological space. A function f : X → R is said to be upper semicontinuous
from below if, for any point x ∈ X, xn → x as n → ∞ and f(x1) ≤ f(x2) ≤ · · · ≤ f(xn) ≤ · · · imply
limn→∞ f(xn) ≤ f(x).

Chen-Cho-Yang [5] showed that the Weierstrass theorem, Ekeland’s variational principle, and Caristi’s
fixed point theorem hold for lower semicontinuity from above.

Proposition 4.2. [5] Let D be a compact subset of a metric space X and a function ϕ : D → R be lower semi-
continuous from above and bounded from below. Then there exists x0 ∈ D such that ϕ(x0) = infx∈D ϕ(x).

Similarly, we can obtain the following:

Proposition 4.2.∗ Let D be a compact subset of a metric space X and a function ϕ : D → R be upper semi-
continuous from below and bounded from above. Then there exists x0 ∈ D such that ϕ(x0) = supx∈D ϕ(x).

Recall the following in [5]:

Theorem 4.3. (Caristi’s Fixed Point Theorem) Let (D, d) be a complete metric space and a function
ϕ : D → R+ be lower semi-continuous from above. Suppose that a mapping f : D → D satisfies the
following:

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) for all x ∈ D.

Then there exists x0 ∈ D such that f(x0) = x0.

Note that (D, d) can be made into a partially ordered set by defining

x ⪯ y ⇐⇒ d(x, y) ≤ ϕ(x)− ϕ(y)

for x, y ∈ D.

Recently, we gave an elementary proof of Theorem 4.3 in [33] independent from Zorn’s Lemma or its
equivalents. For the earlier proofs of the Caristi theorem, see Kirk [14].

Then we can apply Theorem A as follows:

Theorem D. Let (D, d) be a metric space and ϕ : D → R be upper semi-continuous from below and bounded
from above (resp. lower semi-continuous from above and bounded from below).

Then the following statements are equivalent:

(0) (D, d) is complete.

(α) There exists a maximal (resp. minimal) element v ∈ D; that is, v ⪯̸ w (resp. w ⪯̸ v) for any
w ∈ D\{v}.

(β) If F is a family of maps f : D → D such that, for any x ∈ D with x ̸= f(x), there exists a y ∈ D\{x}
satisfying x ⪯ y (resp. y ⪯ x), then F has a common fixed element v ∈ D, that is, v = f(v) for all f ∈ F.
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(γ) If F is a family of maps f : D → D satisfying x ⪯ f(x) (resp. f(x) ⪯ x) for all x ∈ D with
x ̸= f(x), then F has a common fixed element v ∈ D, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : D ⊸ D such that, for any x ∈ D\F (x) there exists y ∈ D\{x}
satisfying x ⪯ y (resp. y ⪯ x). Then F has a common fixed element v ∈ D, that is, v ∈ F (v) for all F ∈ F.

(ϵ) If F is a family of multimaps F : D ⊸ D such that x ⪯ y (resp. y ⪯ x) holds for any x ∈ D and
any y ∈ F (x)\{x}, then F has a common stationary element v ∈ D, that is, {v} = F (v) for all F ∈ F.

(η) If Y is a subset of D such that, for each x ∈ D\Y , there exists a z ∈ D\{x} satisfying x ⪯ z (resp.
z ⪯ x), then there exists a v ∈ D ∩ Y = Y .

Remark 4.4. Recall that Kirk [13] in 1976 showed the metric completeness (0) is characterized by the
Caristi theorem (γ1). Hence (0) ⇐⇒ (γ1) in Theorem D gives a simple proof of the Caristi theorem.
Moreover, Park [17] in 1984 showed that seven statements are equivalent to metric completeness. These are
essential properties of complete metric spaces and not for to check only whether a metric space is complete
or not.

By applying Theorem D, we can improve or strengthen well-known theorems as follows:

Remark 4.5. (1) Theorem D(α) shows that the Weierstrass Theorem in [5] can be extended to complete
subsets instead of compact subsets.

(2) In view of Theorem D, we can replace the lower (resp. upper) semicontinuity in Theorems B and
C by lower semicontinuity from above (resp. upper semicontinuity from below) with more strengthend
conclusions.

(3) Consider the following particular but equivalent case of (γ):

(γ1) If a map f : D → D satisfying x ⪯ f(x) (resp. f(x) ⪯ x) for all x ∈ D with x ̸= f(x), then f has
a fixed element v ∈ D, that is, v = f(v).

Here f(x) ⪯ x means the Caristi condition

f(x) ⪯ x ⇐⇒ d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)).

Therefore (γ1) holds by the Caristi theorem, and so does Theorem C by Theorem A.

In our previous works, we gave several equivalent formulations of the Caristi theorem and their origins.
See [24, 26–31].

The origin of Theorem D is the following due to Brunner [3] in 1987:

Corollary 4.6. [3] If (X, ρ) is a complete metric space and φ : X → R is bounded above and upper
semi-continuous, then in the Brøndsted order (x ≼ y iff ρ(x, y) ≤ φ(y)−φ(x)), there is a maximal element.

5. Extensions due to Lin-Du [16]

In 2008, Lin and Du [16] introduced the τ -function which generalizes the w-distance due to Takahashi
[35]. They established a generalized Ekeland’s variational principle in the setting of lower semi-continuity
from above and τ -functions. As applications of their Ekeland variational principle, they derived generalized
Caristi’s (common) fixed point theorems, a generalized Takahashi’s nonconvex minimization theorem, a
nonconvex minimax theorem, a nonconvex equilibrium theorem and a generalized flower petal theorem for
l.s.c. from above functions or l.s.c. functions in the complete metric spaces. They also proved that these
theorems also imply their Ekeland variational principle.

Throughout this section, unless specified otherwise, (X, d) is a metric space and φ : (−∞,∞] → (0,∞)
is a nondecreasing function. A function f is said to be proper if f ̸≡ ∞.
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The following definition of τ -function is different from the definition of τ -distance, it is a generalization
of w-distance in [12].

Definition 5.1. [16] A function p : X ×X → [0,∞) is called a τ -function if the following conditions hold:

(τ1) for all x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z);

(τ2) if x ∈ X and {xn} in X with limn→∞ yn = y and p(x, yn) ≤ M for some M =
M(x) > 0, then p(x, y) ≤ M ;

(τ3) for any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, and if there exists a sequence
{yn} in X such that limn→∞ p(xn, yn) = 0, then limn→∞ d(xn, yn) = 0;

(τ4) for x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is known [12] that if p is a w-distance on X ×X, then for all x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0
imply y = z.

Remark 5.2. Every w-distance, introduced and studied by Kada et al. [12], is a τ -function.

After such preparation, Lin and Du [16] in 2006 obtained the following generalization of Ekeland’s
variational principle for l.s.c. from above functions:

Theorem 5.3. [16] Let X be a complete metric space, g : X → (−∞,∞] be a proper l.s.c. function
from above and bounded from below, and p be a τ -function on X ×X. Then there exists v ∈ X such that
p(v, x) > φ(g(v))(g(v)− g(x)) for all x ∈ X\{v}.

Now we apply our Metatheorem to Theorem 5.3:

Theorem E. Let (X, d) be a metric space, g : X → (−∞,∞] be a proper l.s.c. function from above and
bounded from below and p be a τ -function on X ×X.

Then the following equivalent statements hold:

(0) (X, d) is complete.

(α) There exists an element v ∈ X such that p(v, w) > φ(g(v))(g(v)− g(w)) for any w ∈ X\{v}.

(β) If F is a family of maps f : X → X such that, for any x ∈ X with x ̸= f(x), there exists a
y ∈ X\{x} satisfying p(x, y) ≤ φ(g(x))(g(x) − g(y)), then F has a common fixed element v ∈ X, that is,
v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : X → X satisfying p(x, f(x)) ≤ φ(g(x))(g(x) − g(f(x))) for all x ∈ X
with x ̸= f(x), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : X ⊸ X such that, for any x ∈ X\F (x), there exists y ∈ X\{x}
satisfying p(x, y) ≤ φ(g(x))(g(x)− g(y)). Then F has a common fixed element v ∈ X, that is, v ∈ F (v) for
all F ∈ F.

(ϵ) If F is a family of multimaps F : X ⊸ X such that p(x, y) ≤ φ(g(x))(g(x) − g(y)) holds for any
x ∈ X and any y ∈ F (x)\{x}, then F has a common stationary element v ∈ X, that is, {v} = F (v) for all
F ∈ F.

(η) If Y is a subset of X such that, for each x ∈ X\Y , there exists a z ∈ X\{x} satisfying p(x, y) ≤
φ(g(x))(g(x)− g(y)), then there exists a v ∈ X ∩ Y = Y .

Proof. Recall that (0) =⇒ (α) holds by Theorem 5.3. Note that (α) − (η) are logically equivalent by
Theorem A. Conversely, (γ) shows

d(x, f(x)) ≤ g(x)− g(f(x)) for p = d,

with the constant function φ = 1. Hence (γ1) implies the Caristi fixed point theorem. Now by Kirk’s
characterization [13] of metric completeness, we have (γ) =⇒ (0). This completes our proof. □
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Note that p(v, v) = 0 throughout in Theorem E.

As a first application of their generalized Ekeland variational principle, Lin-Du [16] derived the following
generalization of Caristi’s theorem for a family of multimaps:

Theorem 5.4. [16] Let (X, d) be complete, p and g be the same as in Theorem 5.3. Let I be any index set
and for each i ∈ I, let Ti : X ⊸ X be a multimap such that for each x ∈ X, there exists y = y(x, i) ∈ Ti(x)
with

p(x, y) ≤ φ(g(x))(g(x)− g(y)).

Then there exists v ∈ X such that v ∈
⋂

i∈I Ti(v), that is, the family of multimaps {Ti}i∈I has a common
fixed point in X, and p(v, v) = 0.

This is just (0) =⇒ (γ) in Theorem E.

In [16], Corollary 2.1 is an equivalent form of Theorem 2.2 for a family of single-valued maps. Therefore,
we have Theorem E(ϵ) =⇒ Theorem 2.2 [16] =⇒ Corollary 2.1 [16] =⇒ Theorem E(γ). Hence they are all
equivalent.

In [30], we showed our equivalent formulations imply many new facts.

6. Extensions of Cobzaş [7]

Our Metatheorem was originated from the Ekeland Principle which has equivalent forms like the Caristi
fixed point theorem, Takahashi’s minimization theorem, and many others. Our recent applications of
Metatheorem to those theorems were given in [23-28].

Recently, Cobzaş [7] in 2022 gave versions of Ekeland, Takahashi, Caristi Principles in preordered quasi-
metric spaces, the equivalence to some completeness results for the underlying quasi-metric spaces.

For convenience, Cobzaş [7] formulated these three principles as follows:

Theorem 6.1. (Ekeland, Takahashi and Caristi principles) Let (X, d) be a complete metric space and
φ : X → R ∪ {∞} a proper bounded below l.s.c. function. Then the following statements hold:

[wEk] There exists z ∈ domφ such that φ(z) < φ(x) + d(x, z) for all x ∈ X\{z}.

[Tak] If for every x ∈ domφ with φ(x) > inf φ(X) there exists an element y ∈ domφ\{x} such that
φ(y) + d(x, y) ≤ φ(x), then φ attains its minimum on X, i.e., there exists z ∈ domφ such that φ(z) =
inf φ(X).

[Car] If the mapping f : X → X satisfies d(f(x), x) + φ(f(x)) ≤ φ(x) for all x ∈ domφ, then f has a
fixed point in domφ, i.e., there exists z ∈ domφ such that f(z) = z.

Here [wEk] means the weak Ekeland principle, [Tak] the Takahashi principle, and [Car] the Caristi fixed
point theorem. Also we denote domφ = {x ∈ X : −∞ < φ(x) < ∞}.

As we have seen in previous sections, the following holds:

Theorem 6.1.∗ Let (X, d) be a complete metric space and a proper function ϕ : X → R be lower semi-
continuous from above and bounded from below (resp. upper semi-continuous from below and bounded from
above).

Then the three statements in Theorem 6.1 hold.

Here ϕ is proper means ϕ ̸≡ ∞ and ϕ ̸≡ −∞.

Motivated by Example 4.1 of [6], we derive the following from Theorem D:

Theorem F. Let (X, d) be a metric space and a proper function φ : X → R be l.s.c. from above and bounded
from below (resp. u.s.c. from below and bounded from above). Let A = domφ.

Then the following statements are equivalent:
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(0) (X, d) is complete.

(α) There exists a maximal (resp. minimal) element v ∈ A such that

d(v, w) > φ(v)− φ(w) (resp. d(v, w) > φ(w)− φ(v))

for any w ∈ X\{v}. [wEk]

(β) If F is a family of maps f : A → X such that for any x ∈ A with x ̸= f(x), there exists a y ∈ X\{x}
satisfying

d(x, y) ≤ φ(x)− φ(y) (resp. d(x, y) ≤ φ(y)− φ(x)),

then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A → X satisfying

d(x, f(x)) ≤ φ(x)− φ(f(x)) (resp. d(x, f(x)) ≤ φ(f(x))− φ(x))

for all x ∈ A\{f(x)}, then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F. [Car]

(δ) Let F be a family of multimaps T : A ⊸ X such that, for any x ∈ A\T (x), there exists y ∈ X\{x}
satisfying

d(x, y) ≤ φ(x)− φ(y) (resp. d(x, y) ≤ φ(y)− φ(x)),

then F has a common fixed element v ∈ A, that is, v ∈ T (v) for all T ∈ F.

(ϵ) If F is a family of multimaps T : A ⊸ X such that

d(x, y) ≤ φ(x)− φ(y) (resp. d(x, y) ≤ φ(y)− φ(x))

holds for any x ∈ A and any y ∈ T (x)\{x}, then F has a common stationary element v ∈ A, that is,
{v} = T (v) for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x} satisfying

d(x, z) ≤ φ(x)− φ(z) (resp. d(x, z) ≤ φ(z)− φ(x)),

then there exists a v ∈ A ∩ Y .

In this theorem, note that “(α) ⇐⇒ [wEk] with its dual form,” and “(γ1) ⇐⇒ [Car] with the first form”
of the following particular form of γ:

(γ1) If f : X → X is a map such that

d(x, f(x)) ≤ φ(x)− φ(f(x)) (resp. d(x, f(x)) ≤ φ(f(x))− φ(x))

for any x ∈ X, then f has a fixed element v ∈ X, that is, v = f(v).

Moreover, we show an application of Theorem A∗(ζ1) as follows:

Theorem 6.2. Theorem A∗(ζ1) implies the Takahashi principle and its dual form.

Proof. For any x ∈ A with φ(x) > inf φ(X),

T (x) = {y ∈ X : φ(x) > φ(y)}.

Suppose that for each x ∈ A, there exists y ∈ A\{x} ⊂ X\{x} such that d(x, y) ≤ φ(x) − φ(y). Then, by
(ζ1), we have v ∈ A such that T (v) = ∅, that is, φ(v) ≤ φ(y) for all y ∈ X, or φ(v) = inf φ(X).

For the dual, T (x) = {y ∈ X : φ(y) > φ(x)} works. □
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For some more details on Theorem 6.1, see Cobzaş [7]. From his own principle, Takahashi deduced
Caristi’s fixed point theorem, Ekeland’s ε-variational principle, Nadler’s fixed point theorem, etc. Hence
they also follow from the maximality of Theorem A∗.

From Theorem F(α), (γ) and the Brøndsted-Jachymski Principle, we have the following;

Theorem G. Let (X, d) be a complete metric space and a proper function φ : X → R be l.s.c. from above
and bounded from below (resp. u.s.c. from below and bounded from above). If f : X → X is a map such
that

d(x, f(x)) ≤ φ(x)− φ(f(x)) (resp. d(x, f(x)) ≤ φ(f(x))− φ(x))

for any x ∈ X. Then we have

Fix(f) = Per(f) ⊃ Max(≼) ̸= ∅ (resp. Fix(f) = Per(f) ⊃ Min(≼) ̸= ∅).

7. Equivalents of Metric Completeness

A metric space is complete if every Cauchy sequence converges, by definition. Typical examples are Eu-
clidean spaces, Hilbert spaces, Banach spaces, and many others. In this article, we showed many equivalent
statements to the completeness of metric spaces as in Theorems D, E, F. Such equivalencies can be extended
to more than one hundred generalizations of metric spaces.

In this section, we recall some history related to the equivalences of metric completeness as follows:

(1) Kirk [13] in 1976: Metric completeness is equivalent to the Caristi fixed point theorem.

(2) Park [17] in 1984: Historically well-known equivalences of metric completeness were collected. This
extends [13]. Some editor comments like “Who dare use this kind of things to check the completeness?”
Such characterizations show important properties of complete metric spaces, not only for to check their
completeness.

(3) Takahashi [34] in 1991 showed

Metric completenes =⇒ Takahashi Principle =⇒ Caristi theorem.

Hence his principle is equivalent to metric completeness. This was also given in Theorem F.

(4) Ekeland [8-10] in 1972-77: His principle assumes completeness and implies the Caristi theorem.
Hence it is equivalent to the metric completeness. Ansari [1] in 2014 proved the Ekeland principle implies
completeness.

(5) Cobzaş [6] in 2020: Abstract. “The aim of this paper is to present various circumstances in which
fixed point results imply completeness. For metric spaces, this is the case of Ekeland’s variational principle
and of its equivalent, Caristi’s fixed point theorem. Other fixed point results having this property will also
be presented in metric spaces, in quasi-metric spaces, and in partial metric spaces. A discussion on topology
and order and on fixed points in ordered structures and their completeness properties is included as well.”

This very informative article contains the contents of 201 articles on completeness of metric spaces and
only some of generalized metric spaces.

8. Conclusion

Since the Ekeland variational principle in 1972 and the Caristi fixed point theorem in 1976 appeared,
more than one thousand related papers were published. Most of them are related to certain maximal element
principles in Nonlinear Analysis and belong to Ordered Fixed Point Theory [28].

As we have seen in Theorem A, the maximal (or minimal) element v in certain pre-ordered sets can be
fixed point, stationary point, common fixed point, common stationary point, etc. of a family of maps or
multimaps, and conversely. Some authors seem to be not recognized this fact yet.
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In many fields of mathematical sciences, there are plentiful number of theorems concerning maximal
points or various fixed points that can be applicable our Metatheorem and Theorem A. Some of such
theorems can be seen in our previous works and the present article. Therefore, our Metatheorem and
Theorem A are convenient machines to expand our knowledge easily. In this article we presented only small
number of relatively old and well-known examples.
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