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Abstract

The work studies boundary value problems with non-dynamic and dynamic boundary conditions for one-
and two-dimensional Boussinesq-type equations in domains representing a trapezoid, triangle, "curvilinear"
trapezoid, "curvilinear" triangle, truncated cone, cone, truncated "curvilinear" cone, and "curvilinear" cone.
Combining the methods of the theory of monotone operators and a priori estimates, in Sobolev classes, we
have established theorems on the unique weak solvability of the boundary value problems under study.
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1. Introduction

The theory of Boussinesq equations and its modi�cations always attracts the attention of mathematicians
and applied scientists. The Boussinesq equation, as well as its modi�cations, take an important place in the
description of the motion of liquids and gases, including in the theory of non-stationary �ltration in porous
media [1]�[11]. The works [12]�[17] can also be noted here. In recent years, boundary value problems for these
equations have been actively studied, since they simulate processes in porous media. Processes occurring
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in porous media acquire special importance for deep understanding and comprehension in the problems of
exploration and e�cient development of oil and gas �elds.

The papers [18]�[20] previously studied the solvability of the boundary value problems for one-dimensional
Boussinesq-type and Burgers equations with Dirichlet boundary conditions in a domain, which is represented
by a trapezoid or a triangle, respectively.

In this paper, we study the questions of the correctness of the formulation of boundary value problems
for one- and two-dimensional Boussinesq-type equations in a domain on the moving part of the boundary
of which dynamic nonlinear conditions are set. Domains are represented by a trapezoid, triangle, truncated
cone, cone, truncated "curvilinear" cone, and "curvilinear" cone. We establish theorems on the unique
weak solvability of the considered boundary problems.

2. Statements of the problems and main results

Problem 1. Let Ωt = {0 < x < t} and ∂Ωt be the boundary of Ωt, 0 < t0 < T < ∞. In the domain
Qxt = Ωt × (t0, T ), which is a trapezoid, we consider an initial boundary value problem for Boussinesq-type
equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (1)

with boundary conditions

du

dt
+

1

2
|u|u = g(t) at {x = t, t ∈ (t0, T )}, u = 0 at {x = 0, t ∈ (t0, T )}, (2)

where du(t,t)
dt = [∂ tu(x, t) + ∂xu(x, t)]|x=t , and with initial condition

u(x, t0) = u0(x), x ∈ Ωt0 = (0, t0); u(t0, t0) = u00, (3)

where f(x, t), g(t), u0(x) are given functions, u00 is a given number.

Problem 2. Let Ωt = {0 < x < t} and ∂Ωt be the boundary of Ωt, T < ∞. In the domain Qxt =
Ωt × (0, T ), representing a triangle, we consider a boundary value problem for the Boussinesq-type equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (4)

with boundary conditions

du

dt
+

1

2
|u|u = g(t) at {x = t, t ∈ (0, T )}, u = 0 at {x = 0, t ∈ (0, T )}, (5)

where du(t,t)
dt = [∂ tu(x, t) + ∂xu(x, t)]|x=t , and the functions f(x, t), g(t) are given.

Problem 3. Let Ωt = {0 < x < φ(t)} and ∂Ωt be the boundary of Ωt, 0 < t0 < T < ∞,
φ(t) ∈ C1([t0, T ]), 0 ≤ φ ′(t) ≤ C1 = const, φ(t0) > 0. In the domain Qxt = Ωt × (t0, T ), representing
a "curvilinear" trapezoid, we consider the initial-boundary problem for the Boussinesq-type equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (6)

with boundary conditions

du

dt
+

1

2
|u|u = g(t) at {x = φ(t), t ∈ (t0, T )}, u = 0 at {x = 0, t ∈ (t0, T )}, (7)

where du(t,t)
dt = [∂ tu(x, t) + φ ′(t)∂xu(x, t)]|x=φ(t) , and with initial condition

u(x, t0) = u0(x), x ∈ Ωt0 = (0, t0); u(φ(t0), t0) = u00, (8)
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where f(x, t), g(t), u0(x) are given functions, u00 is a given number.

Problem 4. Let Ωt = {0 < x < φ(t)} and ∂Ωt be the boundary of Ωt, T < ∞, φ(t) ∈ C1([0, T ]), 0 ≤
φ ′(t) ≤ C1 = const, φ(0) = 0, ∃ ε : 0 < ε ≪ T, φ ′(t) = 1 ∀ t ∈ [0, ε]. In the domain Qxt = Ωt × (0, T ),
which is a "curvilinear" triangle, we consider a boundary value problem for Boussinesq-type equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (9)

with boundary conditions

du

dt
+

1

2
|u|u = g(t) at {x = φ(t), t ∈ (0, T )}, u = 0 at {x = 0, t ∈ (0, T )}, (10)

where du(t,t)
dt = [∂ tu(x, t) + φ ′(t)∂xu(x, t)]|x=φ(t) , and the functions f(x, t), g(t) are given.

Remark 2.1. We consider problems with a dynamic boundary condition only on the moving part of the

boundary. The latter in no way detracts from the generality; this is done only for the sake of simplicity of

presentation. It would be possible to put a dynamic condition on the �xed part of the boundary as well.

Problem 5. Let x = (x1, x2), Ωt = {|x| < t} and ∂Ωt be the boundary of Ωt, 0 < t0 < T < ∞. In
the domain Qxt = Ωt × (t0, T ), which is a truncated cone, we consider an initial-boundary problem for a
two-dimensional Boussinesq-type equation

∂ tu−
2∑

i=1

∂xi (|u|∂xiu) = f, (x, t) ∈ Qxt, (11)

with boundary conditions

Dtu+
1

2
|u|u = g(x, t) at (x, t) ∈ Σxt ≡ ∂Ωt × (t0, T ), (12)

where Dtu(x, t)
∣∣
|x|=t

≜ [∂ tu(x, t) + ∂ n⃗u(x, t)]
∣∣
|x|=t

, n⃗ is a unit outward normal to the circle |x| = t, and

with initial condition
u(x, t0) = u0(x), x ∈ Ωt0 , u(x, t0) = u00(x), x ∈ ∂Ωt0 , (13)

where f(x, t), g(x, t), u0(x), u00(x) are given functions.

Problem 6. Let x = (x1, x2), Ωt = {|x| < t} and ∂Ωt be the boundary of Ωt, T < ∞. In the
domain Qxt = Ωt × (0, T ), which is a cone, we consider a boundary value problem for a two-dimensional
Boussinesq-type equation

∂ tu−
2∑

i=1

∂xi (|u|∂xiu) = f, (x, t) ∈ Qxt, (14)

with boundary conditions

Dtu+
1

2
|u|u = g(x, t) at (x, t) ∈ Σxt ≡ ∂Ωt × (0, T ), (15)

where Dtu(x, t)
∣∣
|x|=t

≜ [∂ tu(x, t) + ∂ n⃗u(x, t)]
∣∣
|x|=t

, n⃗ is a unit outward normal to the circle |x| = t, and the

functions f(x, t), g(x, t) are given.

Problem 7. Let x = (x1, x2), Ωt = {|x| < φ(t)} and ∂Ωt be the boundary of Ωt, 0 < t0 < T < ∞,
φ(t) ∈ C1([t0, T ]), 0 ≤ φ ′(t) ≤ C1 = const, φ(t0) > 0. In the domain Qxt = Ωt × (t0, T ), representing
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a truncated cone (with a curvilinear generatrix determined by the function φ(t)), we consider an initial
boundary value problem for a two-dimensional Boussinesq-type equation

∂ tu−
2∑

i=1

∂xi (|u|∂xiu) = f, (x, t) ∈ Qxt, (16)

with boundary conditions

Dtu+
1

2
|u|u = g(x, t) at (x, t) ∈ Σxt ≡ ∂Ωt × (t0, T ), (17)

where Dtu(x, t)
∣∣
|x|=φ(t)

≜ [∂ tu(x, t) + φ ′(t)∂ n⃗u(x, t)]
∣∣
|x|=φ(t)

, n⃗ is a unit outward normal to the circle

|x| = φ(t), and with initial condition

u(x, t0) = u0(x), x ∈ Ωt0 , u(x, t0) = u00(x), x ∈ ∂Ωt0 , (18)

where f(x, t), g(x, t), u0(x), u00(x) are given functions.

Problem 8. Let x = (x1, x2), Ωt = {|x| < φ(t)} and ∂Ωt be the boundary of Ωt, T < ∞, φ(t) ∈
C1([0, T ]), 0 ≤ φ ′(t) ≤ C1 = const, φ(0) = 0, ∃ ε : 0 < ε ≪ T, φ ′(t) = 1 > 0 ∀ t ∈ [0, ε]. In the domain
Qxt = Ωt × (0, T ), representing a cone (with a curvilinear generatrix determined by the function φ(t)), we
consider a boundary value problem for a two-dimensional Boussinesq-type equation

∂ tu−
2∑

i=1

∂xi (|u|∂xiu) = f, (x, t) ∈ Qxt, (19)

with boundary conditions

Dtu+
1

2
|u|u = g(x, t) at (x, t) ∈ Σxt ≡ ∂Ωt × (0, T ), (20)

where Dtu(x, t)
∣∣
|x|=φ(t)

≜ [∂ tu(x, t) + φ ′(t)∂ n⃗u(x, t)]
∣∣
|x|=φ(t)

, n⃗ is a unit outward normal to the circle

|x| = φ(t), and the functions f(x, t), g(x, t) are assumed to be given.

3. Main results

Using and developing the results of [18]�[19], we have established the validity of the following theo-
rems.

Theorem 3.1 (Trapezoid). Let

f ∈ L3/2((t0, T );W
−1
3/2(Ωt)), u0 ∈ H−1(Ωt0),

g ∈ L3/2((t0, T )), u00 is a given number.
(21)

Then the initial boundary value problem (1)�(3) has a unique solution

u ∈ L3((t0, T );L3(Ωt)) ∩ L∞((t0, T );H
−1(Ωt)),

∂ tu ∈ L3/2((t0, T );W
−1
3/2(Ωt)),

v(s) ∈ L3(0,
√
2 (T − t0)),

v ′(s) ∈ L3/2(0,
√
2 (T − t0)),

(22)

where t ∈ (t0, T ), s ∈ (0,
√
2 (T − t0)), v(s)

∣∣
s=

√
2 (t−t0)

= u(t, t), s = s(t) =
√
2 (t− t0).
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Theorem 3.2 (Triangle). Let

f ∈ L3/2((0, T );W
−1
3/2(Ωt)), g ∈ L3/2((0, T )). (23)

Then the boundary value problem (4)�(5) has a unique solution

u ∈ L3((0, T );L3(Ωt)) ∩ L∞((0, T );H−1(Ωt)),

∂ tu ∈ L3/2((0, T );W
−1
3/2(Ωt)),

v(s) ∈ L3(0,
√
2T ) ∩ L∞(0,

√
2T ),

v ′(s) ∈ L3/2(0,
√
2T ),

(24)

where t ∈ (0, T ), s ∈ (0,
√
2T ), v(s)

∣∣
s=

√
2 t

= u(t, t), s = s(t) =
√
2 t; and for {x → 0+, x → t−0, t → 0+}

we have {
u(x, t) = O

(
x−α0(t− x)−α+α0t−β

)
,

α0 ≤ α < 1
3 , α+ β < 2

3 .
(25)

Theorem 3.3 ("Curvilinear" trapezoid). Let

f ∈ L3/2((t0, T );W
−1
3/2(Ωt)), u0 ∈ H−1(Ωt0),

g ∈ L3/2((t0, T )), u00 is a given number.
(26)

Then the initial boundary value problem (6)�(8) has a unique solution

u ∈ L3((t0, T );L3(Ωt)) ∩ L∞((t0, T );H
−1(Ωt)),

∂ tu ∈ L3/2((t0, T );W
−1
3/2(Ωt)),

v(s) ∈ L3(0, s(T )),

v ′(s) ∈ L3/2(0, s(T )),

(27)

where v(s)
∣∣
s=s(t)

= u(φ(t), t), s = s(t) =
t∫

t0

√
1 + [φ ′(τ)]2dτ, s ∈ (0, s(T )), t ∈ (t0, T ).

Theorem 3.4 ("Curvilinear" triangle). Let

f ∈ L3/2((0, T );W
−1
3/2(Ωt)), g ∈ L3/2((0, T )). (28)

Then the boundary value problem (9)�(10) has a unique solution

u ∈ L3((0, T );L3(Ωt)) ∩ L∞((0, T );H−1(Ωt)),

∂ tu ∈ L3/2((0, T );W
−1
3/2(Ωt)),

v(s) ∈ L3(0, s(T )) ∩ L∞(0, s(T )),

v ′(s) ∈ L3/2(0, s(T )),

(29)

where v(s)
∣∣
s=s(t)

= u(φ(t), t), s = s(t) =
t∫

t0

√
1 + [φ ′(τ)]2dτ, s ∈ (0, s(T )), t ∈ (0, T ); and for {x →

0+, x → t− 0, t → 0+} we have{
u(x, t) = O

(
x−α0(t− x)−α+α0t−β

)
,

α0 ≤ α < 1
3 , α+ β < 2

3 .
(30)
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Theorem 3.5 (Truncated cone). Let

f ∈ L3/2((t0, T );W
−1
3/2(Ωt)), u0 ∈ H−1(Ωt0),

g ∈ L3/2((t0, T );W
−2/3
3/2 (∂Ωt)), u00 ∈ L2(Ωt0) are given functions.

(31)

Then the initial boundary value problem (11)�(13) has a unique solution

u ∈ L3((t0, T );L3(Ωt)) ∩ L∞((t0, T );H
−1(Ωt)),

∂ tu ∈ L3/2((t0, T );W
−1
3/2(Ωt)),

v(x, s) ∈ L3((0,
√
2 (T − t0));W

2/3
3 (∂Ωt)) ∩ L∞((0,

√
2 (T − t0));L2(∂Ωt)),

∂ sv(x, s) ∈ L3/2((0,
√
2 (T − t0));W

−2/3
3/2 (∂Ωt)),

(32)

where t ∈ (t0, T ), s =
√
2 (t− t0) ∈ (0,

√
2 (T − t0)),

v(x, s)
∣∣
s=

√
2 (t−t0), |x|=t

= u(x, t)
∣∣
|x|=t

,

∂ sv(x, s)
∣∣
s=

√
2 (t−t0), |x|=t

= Dtu(x, t)
∣∣
|x|=t

≜ [∂ tu(x, t) + ∂ n⃗u(x, t)]
∣∣
|x|=t

.

Theorem 3.6 (Cone). Let

f ∈ L3/2((0, T );W
−1
3/2(Ωt)), g ∈ L3/2((0, T );W

−2/3
3/2 (∂Ωt)). (33)

Then the boundary value problem (14)�(15) has a unique solution

u ∈ L3((0, T );L3(Ωt)) ∩ L∞((0, T );H−1(Ωt)),

∂ tu ∈ L3/2((0, T );W
−1
3/2(Ωt)),

v(x, s) ∈ L3((0,
√
2T );W

2/3
3 (∂Ωt)) ∩ L∞((0,

√
2T );L2(∂Ωt)),

∂ sv(x, s) ∈ L3/2((0,
√
2T );W

−2/3
3/2 (∂Ωt)),

(34)

where t ∈ (0, T ), s =
√
2 t ∈ (0,

√
2T ),

v(x, s)
∣∣
s=

√
2 t, |x|=t

= u(x, t)
∣∣
|x|=t

,

∂ sv(x, s)
∣∣
s=

√
2 t, |x|=t

= Dtu(x, t)
∣∣
|x|=t

≜ [∂ tu(x, t) + ∂ n⃗u(x, t)]
∣∣
|x|=t

;

and for {|x| → 0+, |x| → t− 0, t → 0+} we have{
u(x, t) = O

(
|x|−α0(t− |x|)−α+α0t−β

)
,

α0 ≤ α < 1
3 , α+ β < 2

3 .
(35)

Theorem 3.7 (Truncated "curvilinear" cone). Let

f ∈ L3/2((t0, T );W
−1
3/2(Ωt)), u0 ∈ H−1(Ωt0),

g ∈ L3/2((t0, T );W
−2/3
3/2 (∂Ωt)), u00 ∈ L2(Ωt0) are given functions.

(36)

Then the initial boundary value problem (16)�(18) has a unique solution

u ∈ L3((t0, T );L3(Ωt)) ∩ L∞((t0, T );H
−1(Ωt)),

∂ tu ∈ L3/2((t0, T );W
−1
3/2(Ωt)),

v(x, s) ∈ L3((0, s(T ));W
2/3
3 (∂Ωt)) ∩ L∞((0, s(T ));L2(∂Ωt)),

∂ sv(x, s) ∈ L3/2((0, s(T ));W
−2/3
3/2 (∂Ωt)),

(37)
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where

t ∈ (t0, T ), s ∈ (0, s(T )), s = s(t) =

t∫
t0

√
1 + [φ ′(τ)]2dτ,

v(x, s)
∣∣
s=s(t), |x|=φ(t)

= u(x, t)
∣∣
|x|=φ(t)

,

∂ sv(x, s)
∣∣
s=s(t), |x|=φ(t)

= Dtu(x, t)
∣∣
|x|=φ(t)

≜
[
∂ tu(x, t) + φ ′(t)∂ n⃗u(x, t)

] ∣∣
|x|=φ(t)

.

Theorem 3.8 ("Curvilinear" cone). Let

f ∈ L3/2((0, T );W
−1
3/2(Ωt)), g ∈ L3/2((0, T );W

−2/3
3/2 (∂Ωt)). (38)

Then the boundary value problem (19)�(20) has a unique solution

u ∈ L3((0, T );L3(Ωt)) ∩ L∞((0, T );H−1(Ωt)),

∂ tu ∈ L3/2((0, T );W
−1
3/2(Ωt)),

v(x, s) ∈ L3((0, s(T ));W
2/3
3 (∂Ωt)) ∩ L∞((0, s(T ));L2(∂Ωt)),

∂ sv(x, s) ∈ L3/2((0, s(T ));W
−2/3
3/2 (∂Ωt)),

(39)

where

t ∈ (0, T ), s ∈ (0, s(T )), s = s(t) =

t∫
0

√
1 + [φ ′(τ)]2dτ,

v(x, s)
∣∣
s=s(t), |x|=φ(t)

= u(x, t)
∣∣
|x|=φ(t)

,

∂ sv(x, s)
∣∣
s=s(t), |x|=φ(t)

= Dtu(x, t)
∣∣
|x|=φ(t)

≜
[
∂ tu(x, t) + φ ′(t)∂ n⃗u(x, t)

] ∣∣
|x|=φ(t)

;

and for {|x| → 0+, |x| → t− 0, t → 0+} we have{
u(x, t) = O

(
|x|−α0(t− |x|)−α+α0t−β

)
,

α0 ≤ α < 1
3 , α+ β < 2

3 .
(40)

4. Schemes of proofs of theorems 3.1�3.8

Let us give a scheme of the proof using Theorems 3.1�3.4. For example, Problem 1 is divided into
two subproblems:

Problem 1.1. Find a solution to the following Cauchy problem for an (ordinary) di�erential equation

du

dt
+

1

2
|u|u = g(t) at {x = t, t ∈ (t0, T )}, (41)

where du(t,t)
dt = [∂ tu(x, t) + ∂xu(x, t)]|x=t , with initial condition

u(t0, t0) = u00, (42)

where g(t) is a given function, u00 is a given number.
Under the conditions of Theorem 3.1 in the Cauchy problem (41)�(42) the operator 1

2 |u|u has the mono-
tonicity condition. This allows us to establish the validity of the assertion that Problem 1.1 has a unique
solution {v(s), s ∈ (0,

√
2T )}, moreover v(s) ∈ L3(0,

√
2 (T−t0)), v ′(s) ∈ L3/2(0,

√
2 (T−t0)), which allows

us to obtain the Dirichlet boundary condition u(t, t) = v(
√
2 (t− t0)), on the moving boundary x = t of the

domain Qxt where u(t0, t0) = v(0) = u00.
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Thus, we get the following initial boundary value problem
Problem 1.2. Find a solution to the initial boundary value problem for the Boussinesq equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (43)

with boundary conditions

u(x, t) = h(t) at {x = t, t ∈ (t0, T )}, u(x, t) = 0 at {x = 0, t ∈ (t0, T )}, (44)

and with initial condition
u(x, t0) = u0(x), x ∈ Ωt0 = (0, t0), (45)

where f(x, t), h(t) = v(
√
2 (t− t0)), u0(x) are given functions.

The solvability of the problem (43)�(45) was previously established by us in [18].
Thus, the solvability of Problems 1.1 and 1.2 allows us to obtain the assertion of Theorem 3.1. This is a

brief outline of the proof of this theorem.
Now about the proof of Theorem 3.2. First of all, let us formulate an analog of Problem 1.1.
Problem 2.1. Find a solution to the Cauchy problem for an (ordinary) di�erential equation

du

dt
+

1

2
|u|u = g(t) at {x = t, t ∈ (0, T )}, (46)

where du(t,t)
dt = [∂ tu(x, t) + ∂xu(x, t)]|x=t , with initial condition

u(0, 0) = 0, (47)

where g(t) is a given function.
Under the conditions of Theorem 3.2 in the Cauchy problem (46)�(47) the operator 1

2 |u|u has the mono-
tonicity condition. This allows us to establish the validity of the assertion that Problem 2.1 has a unique
solution {v(s), s ∈ (0,

√
2T )}, moreover v(s) ∈ L3(0,

√
2T ), v ′(s) ∈ L3/2(0,

√
2T ), which allows us to

obtain the Dirichlet boundary condition u(t, t) = v(
√
2 t), where u(0, 0) = v(0) = 0.

Thus, we get the following boundary value problem
Problem 2.2. Find a solution to the boundary value problem for the Boussinesq equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (48)

with boundary conditions

u(x, t) = h(t) at {x = t, t ∈ (0, T )}, u(x, t) = 0 at {x = 0, t ∈ (0, T )}, (49)

where f(x, t), h(t) = v(
√
2 t) are given functions.

The solvability of the problem (48)�(49) was established by us earlier in [19].

Remark 4.1. Let us show that the solution u(x, t) of the boundary value problem (23)�(24) having a singu-

larity of the order speci�ed in (25) will belong to the space L3(Q
t0
xt), where Qt0

xt = {x, t| 0 < x < t, 0 < t <
t0 ≪ T}. For this purpose, it su�ces to show that the following integral is bounded for t0 → 0+:∫

Q
t0
xt

x−3α0(t− x)−3α+3α0t−3β dx dt. (50)

We have ∫ t0

0
t−3β

∫ t

0
x−3α0(t− x)−3α+3α0 dx dt =

∥∥∥∥∥∥
x = t sin2 θ
0 < θ < π/2
dx = 2 sin θ cos θ dθ

∥∥∥∥∥∥ =
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= 2

∫ t0

0
t1−3α−3β

∫ π/2

0
sin1−6α0 θ cos1−6α+6α0 θ dθ dt.

It is easy to check that under the conditions of Theorem 3.2, in the last expression the inner integral takes

a �nite value. Calculating the outer integral, we have∫ t0

0
t1−3α−3β dt =

1

2− 3(α+ β)
t
2−3(α+β)
0 ,

which, under the conditions of Theorem ("1"), is also bounded from above.

Note that if the order of the singularity of the solution u(x, t) is higher than in (25), then this function

is no longer an element of the space L3(Q
t0
xt).

Thus, the solvability of Problems 2.1 and 2.2 allows us to obtain the assertion of Theorem 2.2. This is a
brief outline of the proof of this theorem.

Theorems 3.3 and 3.4 are proved similarly to Theorems 3.1 and 3.2.

Let us proceed to the proof of Theorems 3.5�3.8. Let us give a proof scheme using the theorems 3.5�3.6
as an example. For example, Problem 5 is divided into two subproblems:

Problem 5.1. Find a solution to the following Cauchy problem for a di�erential equation

Dtu+
1

2
|u|u = g(x, t) at {|x| = t, t ∈ (t0, T )}, (51)

where Dtu(x, t) ≜ [∂ tu(x, t) + ∂ n⃗u(x, t)]
∣∣
|x|=t

, n⃗ is a unit outward normal to the circle |x| = t, with initial

condition
u(x, t0) = u00(x), x ∈ {|x| = t}, (52)

where g(x, t), u00(x) are given functions.
Under the conditions of Theorem 3.5 in the Cauchy problem (51)�(52) the operator 1

2 |u|u has the mono-
tonicity condition. This allows us to establish the validity of the assertion that Problem 5.1 has a unique

solution {v(x, s), s ∈ (0,
√
2T )}, moreover v(x, s) ∈ L3((0,

√
2 (T − t0));W

2/3
3 (∂Ωt)) ∩ L∞((0,

√
2 (T −

t0));L2(∂Ωt)), ∂ sv(x, s) ∈ L3/2((0,
√
2 (T−t0));W

−2/3
3/2 (∂Ωt)), which allows us to obtain the Dirichlet bound-

ary condition on the moving boundary |x| = t ofQxt u(x, t)
∣∣
|x|=t

= v(x,
√
2 (t−t0)), where u(x, t0) = v(x, 0) =

u00(x), x ∈ {|x| = t}.
Thus, we get the following initial-boundary problem
Problem 5.2. Find a solution to the initial boundary value problem for the Boussinesq equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (53)

with boundary conditions
u(x, t) = h(x, t) at {|x| = t, t ∈ (t0, T )}, (54)

and with initial condition
u(x, t0) = u0(x), x ∈ Ωt0 = (|x| < t0), (55)

where f(x, t), h(x, t) = v(x,
√
2 (t− t0)) are given functions.

The solvability of the problem (53)�(55) is established in the same way as in [18], following [21]�[24].
Thus, the solvability of Problems 5.1 and 5.2 allows us to obtain the assertion of Theorem 3.5. This is a

brief outline of the proof of this theorem.
Now about the proof of Theorem 3.6. First of all, we formulate an analog of Problem 5.1.
Problem 6.1. Find a solution to the Cauchy problem for a di�erential equation

Dtu+
1

2
|u|u = g(x, t) at {|x| = t, t ∈ (0, T )}, (56)
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where Dtu(x, t) ≜ [∂ tu(x, t) + ∂xu(x, t)]
∣∣
|x|=t

, with initial condition

u(x, 0) = u00(x), x ∈ {|x| = 1}, (57)

where g(x, t) is a given function.
Under the conditions of Theorem 3.6 in the Cauchy problem (56)�(57) the operator 1

2 |u|u has the mono-
tonicity condition. This allows us to establish the validity of the assertion that Problem 6.1 has a unique solu-

tion {v(x, s), s ∈ (0,
√
2T )}, moreover v(x, s) ∈ L3((0,

√
2T );W

2/3
3 (∂Ωt))∩L∞((0,

√
2T );L2(∂Ωt)), ∂ sv(x, s) ∈

L3/2((0,
√
2T );W

−2/3
3/2 (∂Ωt)), which allows us to obtain the Dirichlet boundary condition on the moving

boundary |x| = t of Qxt u(x, t)
∣∣
|x|=t

= v(x,
√
2 t), where u(x, 0) = v(x, 0) = u00(x).

Thus, we get the following boundary value problem
Problem 6.2. Find a solution to the boundary value problem for the Boussinesq equation

∂ tu− ∂x (|u|∂xu) = f, (x, t) ∈ Qxt, (58)

with boundary conditions

u(x, t) = h(x, t) at {x = t, t ∈ (0, T )}, u(x, t) = 0 at {x = 0, t ∈ (0, T )}, (59)

where f(x, t), h(x, t) = v(x,
√
2 t) are given functions.

The solvability of the problem (58)�(59) is set in the same way as in [19], following [21]�[24].
Thus, the solvability of Problems 6.1 and 6.2 allows us to obtain the assertion of Theorem 2.6. This is a

brief outline of the proof of this theorem.
Theorems 3.7 and 3.8 are proved similarly to Theorems 3.5 and 3.6.

Conclusion

In the work boundary value problems for one- and two-dimensional Boussinesq-type equations in domains
representing a trapezoid, a triangle, a "curvilinear" trapezoid, a "curvilinear" triangle, a truncated cone, a
cone, a truncated "curvilinear" cone, and " curvilinear" cone are studied. Using the methods of the theory
of monotone operators and a priori estimates, we prove theorems on their unique weak solvability in Sobolev
classes.
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